
SOUTHWEST RESEARCH INSTITUTE

Post Office Drawer 28510, 6220 Culebra Road

San Antonio, Texas 78228-0510

RESEARCH INTO SOFTWARE EXECUTIVES

FOR SPACE OPERATIONS SUPPORT

FINAL REPORT

NASA Grant No. NAG 9-340

SwRI Project No. 05-2881

Prepared by:

Mark D. Collier

Prepared for:

NASA

Johnson Space Center
Houston TX 77058

September 28, 1990

Approved:

Melvin A. Schrader, Director
Data Systems Department

Final Report

1.0 Introduction

This document serves as the final report for the activity on NASA Grant NAG 9-340, which

is entitled "Research into Software Executives for Space Operations Support". The purpose of this

grant is to research concepts pertaining to a software (workstation) executive which will support a

distributed processing command and control system characterized by high-performance graphics

workstations used as computing nodes.

2.0 Research Background

During the past few years and increasing in the future, many centralized computing installa-

tions are migrating to environments characterized by distributed processing. This migration is driv-

en primarily by the low cost and high performance delivered by state-of-the-art graphic worksta-

tions. Such an environment normally consists of a large number of workstations which are in turn

connected via one or more high-speed networks.

Although a workstation-based distributed processing environment offers many advantages,

it also introduces a number of new concerns. One problem is that engineering-class workstations

most commonly use the UNIX operating system, which is difficult for computer novices to use ef-

fectively. Also, connecting a large number of workstations and expecting them to work as an inte-

grated system is not easily achieved. The introduction of so many separate processors makes con-

figuration management and security a real concern. In fact, the very flexibility which is inherent in

workstations often becomes a problem. This is especially true for real-time critical command and

control systems in which a failure or security break could have disastrous results.

In order to solve these problems, allow the environment to function as an integrated system,

and present a functional development environment to application programmers, it is necessary to

develop an additional layer of software. This "executive" software integrates the system, provides

real-time capabilities, and provides the tools necessary to support the application requirements.

Such an executive will be required for use in evolving systems such as the ground-based control

centers planned at Johnson Space Center. These command and control environments will use a dis-

tributed processing architecture to provide real-time processing of telemetry and command data.

3.0 Research Results

All research performed was geared toward identification and introduction of software tech-

nology into a workstation executive. The research results are represented in the following efforts

and reports:

• Executive Survey and Requirements Report - This report represents the primary effort

of this grant. This effort included a survey of NASA and commercial sites for systems

relevant to workstation executives, a survey of current standard system software tech-

nology, and generation of a set of requirements for a Concept Workstation Executive.

• Graphics Update Report - SwRI performed an analysis of existing graphic user inter-

face and drawing software applicable to workstation executive requirements. This re-

port identifies software such as X Windows, Motif, GKS, and PHIGS and in which ap-

plications this software should be used.

• Analysis of MCCU Workstation Executive Design Report- to provide background into

the direction of a typical executive, SwRI analyzed and commented on the preliminary

and critical design of the MCCU Workstation Executive.

Southwest Research Institute Page 1 Workstation Executives

Final Report

Analysis of POSIX 1003.4 and 1003.6 Report - in order to determine if the proposed

POSIX standards for real-time and security extensions supported the requirements of

workstation executives, SwRI analyzed and commented on the current drafts of the

1003.4 (real-time) and 1003.6 (security) standards.

Inter-language Support Report - SwRI performed a brief survey of current efforts to de-

fine a standard interface between the C, Ada, and FORTRAN high-level languages.

Load Sharing Prototype - To demonstrate proof-of-concept of a capability specified in

the Concept Executive, a load sharing prototype was developed. This prototype records
the load of each workstation in a set of workstations and for each job request, schedules

the job on the workstation with the highest amount of available processing capability.

Southwest Research Institute Page 2 Workstation Executives

Real-time Distributed Processing Systems Introduction

1.0 Introduction

During the past few years, many computing environments have migrated from centralized process-

ing architectures to ones characterized by distributed processing. While distributed processing sys-

tems have existed for years, the recent increase is driven by the availability of high-performance

engineering class workstations. An engineering class workstation is defined as having a high-per-

formance central processing unit (CPU), a floating point accelerator (FPA), at least 256 colors, at

least 1 mega-pixel resolution, and based on the UNIX operating system. Use of UNIX is crucial

as it normally carries with it network and graphics support.

A distributed processing system based on such workstations normally consists of one or more high

speed networks which provide connectivity for the workstations. A distributed processing archi-

tecture of this type offers the following advantages:

• High performance - the continuing development of high performance microprocessors

allows workstations to provide high integer, floating point, and graphics performance.

Many workstations also provide support for multiple processors.

° Flexibility - the UNIX operating system, graphics, and networking software provide a

flexible and powerful development environment which supports a wide variety of ap-

plication requirements.

• Autonomy - users have a high level of control over a powerful local computing resource

and are marginally affected by overall system load.

• Expandability - workstations may be added to the network to support new users or in-

creased processing requirements.

• Interoperability - by utilizing standards for application development, workstations

from many different vendors may be utilized in the same network. An obsolete work-

station may be replaced with a new workstation which provides greatly improved per-

formance. The new workstation may be from the same or a different vendor.

Perhaps the most exciting advantage of using workstations is the availability of hardware and soft-

ware standards. The development of standards promises interoperability among many different

workstation vendors. Workstation technology is among the fastest (if not the fastest) growing in

the industry and there is intense competition for market share. This competition is forcing devel-

opment of systems which often double in performance every year. By basing application software

on standards, an installation can take advantage of this competition and procure the system which

best suits their needs. In the future, as new workstations are introduced, they can be purchased and

installed without a major reinvestment in software porting or redevelopment.

1.1 Real-time Distributed Processing Systems

For several years, system developers have been using a distributed processing architecture to sup-

port real-time systems. A real-time system is one in which both the time of delivery and content

of data is significant in determining the validity of the information. A widely accepted view is that

a distributed processing architecture is superior for real-time systems, as a large and complex task

may be partitioned amongst a number of separate processors, each of which is responsible for a

specific function or set of functions. This type of architecture offers the following advantages:

• Deterministic response - by devoting a processor to a given function, it is possible to

insure the ability of the processor to respond to and process events in real-time.

Page 1-1 Workstation Executives

Workstations in the Real-time World Introduction

• Fault tolerance - distributed processing by its very nature is fault tolerant for if one pro-

cessor falls, only the associated functionality is lost (in a well designed system). Fault

tolerance can be improved by using redundant processors and/or a migration scheme in

which functions are moved from a failed processor to another.

• Expandability - in a well-defined system, as processing requirements increase, existing

processors may be upgraded or new processors may be added.

Using a distributed architecture for a real-time system also introduces a number of disadvantages,

including:

• Data and control distribution - in order to process data, the data must be distributed to

all processors. Data distribution must be performed in real-time, as a significant delay

will offset the advantages of distributed processing.

• Configuration management and security - the use of many separate processors, each

with its own operating system and application software, makes it difficult to insure con-

sistency across the configuration. This concern is especially apparent for critical com-

mand and control systems in which a failure or security break could have disastrous re-

suits.

Real-time systems utilize a wide variety of processors and networks. This varies from completely

custom and proprietary systems to modified Commercial-Off-The-Shelf (COTS) hardware and

software to proprietary COTS systems. Although in most instances it is possible to expand such

systems, additional resources have to be obtained through the original developer at no small cost.

In such instances, system users are not able to procure COTS components in order to expand or

improve the system. Due to the high cost of expansion, performance increase requirements are of-

ten ignored until such time that the system can not meet requirements and has to be replaced. This

is unacceptable for static systems and especially so for dynamic systems which must constantly ex-

pand to address new requirements.

1.2 Workstations in the Real-time World

An obvious solution is to use workstations as the processors in a distributed real-time system. This

type of architecture will allow the system to realize the advantages of a real-time system and offer

the expandability and interoperability advantages of using workstations.

Unfortunately, using workstations in a real-time environment introduces several problems, includ-

ing the following:

• Real-time response - standard UNIX is not a real-time operating system. At this time

it is not possible to use a standard set of UNIX real-time extensions.

• Immature standards - workstation software standards are not yet fully mature. Stan-

dards exist, but there are new standards expected to be in place in the near future.

• Configuration management - connecting a number of workstations into a network and

allowing them to work as an integrated system is not easily achieved. The very flexi-

bility advantages of workstations causes configuration management problems.

One approach toward solving these problems, allowing the environment to function as an integrat-

ed system, and presenting a standardized development environment to application programmers,

is to develop an additional layer of software.

Page 1-2 Workstation Executives

The Workstation Executive Introduction

1.3 The Workstation Executive

The workstation executive is a software subsystem which bridges the gap between the UNIX op-

erating system and the specific requirements of an environment's application programmers. The
workstation executive is not necessarily an additional layer of software, but rather a collection of

COTS and custom software which presents an integrated, functionally complete, standardized, and

real-time environment to application programmers. The three primary goals of the workstation ex-

ecutive are:

• Standardization - the workstation executive will include standard software and interfac-

es which insure the portability of both the executive and all applications.

• System integration and application support - the workstation executive will present an

integrated interface which meets the requirements of the environment's application

programmers.

• Environment control - the workstation executive will define the configuration, control

access to resources, and insure the stability of the system during operations.

The purpose of this document is to present the results of the following research on workstation ex-

ecutives:

• Determine the definition of an executive.

• Briefly describe th_ system for which the executive is defined.

• Determine the scope of the executive within such an environment.

• Determine the requirements for a concept workstation executive.

• Present the results of the executive technology survey.

The end product of this document is a set of requirements which defines a Concept Executive. This

Concept Executive will define a system for a real-time telemetry processing command and control

environment. The use of the term "concept" implies that the requirements will be specified at a

level which is independent of a specific environment. Once the requirements are complete, the

Concept Executive may be applied to a specific environment, expanded for details, and used as the

basis for system development.

1.4 Document Map

This document is divided into ten chapters and a bibliography. The chapters and topics are as fol-

lows:

• [1] Introduction - (current chapter) introduces the requirement for a software (worksta-

tion) executive in real-time spacecraft telemetry processing system characterized by

distributed processing.

• [2] Research Background - describes the phases of this grant and previous research
which is relevant to this effort.

• [3] Definition of an Executive - defines the basic function of a real-time software exec-

utive.

• [4] Target System Description - briefly describes system for which the executive is tar-

geted.

• [5] Concept Executive Description - introduces the Concept Executive and its goals in

the target environment.

Page 1-3 Workstation Executives

Document Map Introduction

• [6] Concept Executive Functional Requirements - presents the requirements which

make up the Concept Executive.

• [7] Survey Introduction - an introduction to the technology survey which was conduct-

ed before and during the Concept Executive requirements definition..

• [8] Executive Systems - includes a summary of each executive reviewed.

• [9] User Interface Systems - includes a summary of each user interface reviewed.

• [10] Standards - includes a summary of each new standard reviewed.

• Appendix A - Bibliography.

It is suggested that the reader review chapters 1 through 6 for information on the Concept Execu-

tive. During the review process, the reader may refer to Chapters 7 through 10 for more informa-

tion on systems which are specified or referenced by the Concept Executive requirements.

Page 1-4 Workstation Executives

The HISDE Prototype Research Background

2.0 Research Background

This document presents the research findings of two phases of NASA Grant NAG 9-340, which is

entitled "Research in Software Executives for Space Operations Support." A "Software Executive"

is a term which covers a wide area of software functionality. This grant is intended to define the

purpose of an executive and indicate the scope of its responsibility within a real-time spacecraft

telemetry processing command and control environment. This grant includes the following three

phases:

• Phase 1 - Survey NASA and commercial sites for executive systems and review current

standards and software technology which is relevant to the research. The results of

phase 1 are presented in chapters 7 through 10.

• Phase 2 - Define an "executive", determine its scope within a real-time spacecraft te-

lemetry processing command and control environment, and develop a set of require-

ments for a concept executive which could be used as the basis for such an environment.

The results of this phase are presented in chapters 2 through 6.

• Phase 3 - As proof of concept, apply the concept executive to an actual environment at

NASA Johnson Space Center. This process will involve adding detailed requirements

and prototyping the executive or critical portions of it.

This document summarizes the results of Phases 1 and 2. The results of phase 3 will be presented

in a separate document which will be delivered at a later date.

2.1 The HISDE Prototype

For NASA Grant NAG 9-269, which was entitled "Research in Software for Space Operations

Support", Southwest Research Institute developed the Hardware Independent Software Develop-

ment Environment (HISDE) prototype to serve as proof-of-concept for a hardware-independent

workstation executive. The HISDE prototype introduced a number of advanced software technol-

ogies and concepts including:

• Extensive use of widely accepted industry standards, including each of the following:

SVID UNIX operating system.

C programming language.

X Windows.

- GKS and PHIGS.

- ISO OSI communications.

Through the use of standards, HISDE was easily ported across multiple vendor work-
stations.

• Open use of UNIX - through a more flexible design and configuration management

scheme, HISDE provided access to the UNIX file system via the familiar UNIX com-
mand line interface.

• Configuration Manager (CM) Workstation - this concept involves a workstation to

which all user applications are loaded with certified libraries prior to being mission cer-

tified and uploaded to a configuration management host.

Page 2-1 Workstation Executives

The HISDE Prototype Research Background

The HISDE prototype is significant to the current research effort as many of the standards and con-

cepts embodied by HISDE are retained in the concept executive. For more information on the HIS-

DE prototype, refer to the Final Report for NASA Grant NAG 9-269.

Page 2-2 Workstation Executives

Definition of an Executive

3.0 Definition of an Executive

The first task of this document is to define the term "executive." This is necessary in order to de-

termine the scope of functionality of the executive within the described environment. The term

"executive" is somewhat generic and interpreted in various ways by different individuals. The

most common definition of an executive is a low-level software subsystem which provides appli-

cation programmers with a more convenient means of accessing the real-time computing capability
of the hardware. As described in [BARA86], "a real-time executive is a software kernel which acts

as an interface between the application software and the CPU hardware." The executive will nor-

mally utilize the available software functionality such as I/O processing, file management, and oth-

er primary functions and then provide the means whereby these functions are used in a real-time,

process-oriented manner. As described in [FITZ87], these functions include "task scheduling,

time/timer management, memory/buffer management, and interrupt handling." Similar functions

are described in [WANG87] as "processor management, timer management, I/O management, and

task work storage allocation."

An executive is normally used on a system which involves a custom hardware configuration de-

signed for a particular application. Such a hardware system will often not provide a complete real-

time multi-tasking operating system. Rather it will include a very basic set of I/O, file manage-

ment, and hardware interface software functions (some of which may be custom developed as

well). This functionality is then tied together by the executive. By providing functions such as

process scheduling, the executive allows application programmers to execute and control a number

of programs. Although similar in function, the executive is not the operating system. Rather as

described in [CLAU87], "The executive is at the top level of the operating system. The executive

is the central, coordinating component of the operating system."

The executive provides primitive functions to the applications programmer. As described in

[FITZ87], "Primitives provided by the executive should satisfy the classic needs of real-time ap-

plications, at the same time having sufficient power and functionality to make applications devel-

opment straightforward." This thought is shared in [CLAU87], as "services of the OS and execu-

tive must cover completely the needs of the applications. Services are just abstractions; they pack-

age the power of the hardware and make it easier to use by managing details irrelevant to the end

user." The functions provided by the executive should be complete and it should not be necessary

for the application programmer to develop additional functionality.

Although an executive is normally defined as a low-level software system, it is more important to

concentrate on the purpose of the executive as a provider of services to the application program-

mer. The purpose of the executive is to attempt to bridge the gap between system hardware and

software and the requirements of the application programmer. This is true whether the executive

is a simple layer on top of device drivers or is a complete multi-tasking, real-time operating system.

This discussion will focus on the instance of layering an executive on top of an operating system.

An operating system will have been designed for general purpose usage in which a large variety of

applications may be developed. As such it requires additional functionality to make it convenient

to use by specific application programmers. This is the purpose of the executive, to tailor the op-

erating system to be as convenient as possible for applications programmers.

When designing the executive, it is important to clearly define the requirements of the system and

its application programmers (Note that the requirements of the "system", such as configuration

management, may conflict with or modify the requirements of programmers and users). As the

Page 3-1 Workstation Executives

Definition of an Executive

system and its applications all depend on the executive, it must be efficient and well-suited for the

environment. The executive must neither be too generic nor too specific. Being too generic will

result in inefficiency; being too specific will require application programmers to bypass the con-

venience functions provided by the executive. As stated by [CLAU87], "If it is necessary for any

reason to break into the package, the convenience vanishes."

Another function of the executive is that it must often hide or mask functionality provided by a gen-

eral purpose operating system. The very flexibility of many operating systems often becomes a

problem in environments which demand high security and a stable configuration. In such cases,

the executive will either remove or buffer the functionality in question from users of the system.

In view of the information presented, the definition of an executive is "A software subsystem

which adds upon the inherent system hardware and software functionality to meet the re-

quirements of the environment and its applications programmers." Figure 3-1 illustrates the

place of the executive in a system.

Executive

uperatmg _ystem

_ystem Hardware

Figure 3-1 Executive in System Hierarchy

An important point is that the executive tailors functionality to support the requirements of appli-

cation programmers. This is opposed to providing an interface directly usable by the end users of

the system.

Page 3-2 Workstation Executives

Target System Description

4.0 Target System Description

The end result of this document is a set of requirements which defines a concept executive which

will manage a network of workstations in order to support a real-time spacecraft telemetry process-

ing command and control environment. The particular type of environment is a ground-based con-

trol center responsible for monitoring and control of space vehicles. Rather than describing an ac-

tual executive implementation for such an environment, the concept describes requirements and

software principles which may be used as the foundation for an implementation of this type. The

concept focuses on applying state-of-the-art software technology which is generic and expandable

in order to allow incorporation of new hardware and software technology.

To prevent the concept from being too generic and impossible to apply in the desired control center

environments, it is necessary to describe the system and make certain assumptions. This control

environment will be characterized by the following:

• Telemetry processing system - this will be a data-driven system in which the primary

input is provided in the form of a cyclic block of real-time telemetry data. This telem-

etry data corresponds to status information sent from on-board spacecraft systems. The

primary purpose of the system is to provide this information to end users to allow mon-

itoring and control of on-board systems.

• Workstations - all data will be made available to and processed by individual worksta-

tions. These workstations will be the primary computing elements and will be capable

of directly accessing, manipulating, and displaying telemetry data. Workstations will

also be capable of initiating spacecraft command sequences.

• Networks - all workstations making up the environment will be directly or indirectly

connected to one or more high-speed global networks.

° Real-time throughput of data - the ability to access, manipulate and compute, display,

and generate command data must be available in real-time.

° Graphics - much of the presentation of data is performed via high-performance color

graphics. Data will be displayed in forms of color-coded text, plots, and other forms of

graphic presentation.

• Host support - the system will rely on one or more hosts to perform centralized func-

tions such as data provision, data recording, software archival, network management,

systems status, and other functions.

• Configuration management and security - it is assumed that the operational system will

employ a rigid configuration management and security policy to insure software certi-

fication and control of user interaction during operations. It is assumed that a host will

be the central repository of all certified software.

The primary hardware components and data flow of the system is illustrated in Figure 4-1.

Page 4-1 Workstation Executives

Target System Description

Spacecraft
Telemetry/Commands

Global

Network(s)

Host
(Cluster)

Workstation Workstation Workstation Workstation

Legend:

• The dotted line indicates the extent of responsibility of the executive.

• The dotted lines connecting the Front-End Computer System and the

Global Network(s) indicate that raw data may or may not be placed on

the network.

Figure 4-1 Target Environment Hardware Configuration

The executive concept will not directly describe or suggest the most appropriate hardware config-

uration. Rather, as described later in the requirements, it will provide a concept which will support

different configurations and allow simple addition or replacement of hardware.

Page 4-2 Workstation Executives

Types of Programmers and Users Concept Executive

5.0 Concept Executive

A workstation executive software subsystem is required in the target environment to support inte-

grated utilization of workstations, networks, graphics, and the UNIX operating system. The work-

station executive will provide the following functions:

• Standardization - the workstation executive will include standard software and interfac-

es which insure the portability of both the executive and applications.

• System integration and application support - the workstation executive will present an

integrated software interface which meets the requirements of the systems application

programmers.

• Environment control - the workstation executive will define the configuration, control

access to resources, and insure the stability of the system during operations.

This document describes a "concept" workstation executive which provides these basic services.

The Concept Workstation Executive (or "Concept Executive") will establish its scope within the

target environment and then describe a set of requirements. This description is a concept, as it

specifies the requirements at a high-level and is intended to support multiple control center envi-

ronments. Rather than focusing on environment specific details, the concept identifies and applies

state-of-the-art standards and technologies. The concept also focuses on standards which provide

a clean migration to more global standards to be defined in the near future. The primary goal of

the Concept Executive is to provide the basis of a system which supports multiple environments

and will have a life cycle extending far into the future.

5.1 Types of Programmers and Users

For this discussion, it is necessary to distinguish the terms "user" and "applications programmer."

A user is the individual who is knowledgeable and responsible for an onboard or ground-based sup-

port system. This individual is able to examine data and determine the distinction between normal

and abnormal operation. This individual is not however assumed to be knowledgeable about soft-

ware development, the executive, or the operating system. This is not to say that individual users

are not able to develop sophisticated applications, but rather that this is not the general case.

An applications programmer is an individual who takes the requirements generated by a user, and

by using the features provided by the operating system and the Concept Executive, translates the

requirements into an executable program. An applications programmer is assumed to be knowl-

edgeable about the operating system, the Concept Executive, and software development in general.

The reason for this distinction is that the Concept Executive is intended to provide functionality to

the level required by the application programmer. This makes the scope of the Concept Executive

much more manageable and is reasonable as the executive must support development of a wide

variety of applications. If the Concept Executive was designed to directly meet the requirements

of end users, then the scope of the executive would increase dramatically. Addressing the require-

ments of non-programming users requires development of a sophisticated and integrated set of

tools which can be directly used by the end user. Although this is a reasonable goal, the associated

applications should build upon the interfaces provided by the Concept Executive, rather than being

considered a part of the executive itself.

5.2 Concept Executive Scope

Figure 5-1 illustrates the different layers of software which will be present in the complete system.

Page 5-1 Workstation Executives

Concept Executive Contents Concept Executive

_ystem Applications and End-user Development TOOLS

Concept Executive

uperatmg :_ystem

:_ystem ltlaraware

Figure 5-1 Concept Executive in System Hierarchy

All application software interfaces with the operating system through the Concept Executive. This

is because the Concept Executive, although it allows access to much of the operating system func-

tionality, actually determines what is and is not legal to use during different modes of operation.

This is necessary for configuration management, system security and to insure development of

standard applications.

Residing above the workstation executive are two distinct layers of application software, includ-

ing:

• System Applications and End User Development Tools - this layer of software consists

of system applications intended to simplify use of the system for application program-

mers and/or end users. This broad layer of software tailors the environment to the re-

quirements of different types of users.

• User applications - this layer of software consists of applications which directly satisfy

user requirements and are used for flight support. This layer includes applications de-

veloped directly upon the Concept Executive and with the aid of System Applications

and End User Development Tools.

The separation between the Concept Executive and the System Applications is what primarily de-

fines the executive scope. The location of this separation greatly affects what is and is not consid-

ered part of the executive. The Concept Executive is defined to provide an integrated set of ser-

vices which supports the common requirements of system and application programmers. As such,

the Concept Executive does not provide a diverse set of specialized interfaces which are tailored

to specific requirements.

The Concept Executive primarily consists of COTS standards and a minimum of efficient custom

software which is needed to support the environment. The Concept Executive tailors itself to the

environment by providing support for networking, graphics, configuration management and other

required primary interfaces. The Concept Executive also recognizes the primary functional re-

quirement of access to operational data. Therefore the Concept Executive provides a basic set of

interfaces which simplify and isolate this process. The Concept Executive assumes that additional

higher level software subsystems will be developed in order to support more specific requirements.

5.3 Concept Executive Contents

The Concept Executive shall present a standardized development interface to the application pro-

grammers of the target environment. The Concept Executive will consist of (COTS) and custom

software which cooperate to achieve this goal. Emphasis is of course placed on the use of COTS

Page 5-2 Workstation Executives

Concept Executive Contents Concept Executive

software as this reduces costs and generally provides a more robust system. The basic contents of

the Concept Executive are summarized in Figure 5-2.

Concept xecutive

uperatmg [Languages iiii;_8_)ii)i)i))iiil)i_ai_i)i))ii)il)i

Interface I commana

[gear-time)ii)iiiii_i_iii_iii)i!i)i!!i!iil)i_i!i)i)ilili_iiii|iiiii!iiiilili!!ii_:::: ::_:i!iiiiii

I Interface :_!i_i_iiiiiii_i_iiiiiii!iiii_!iii_)_!_i_i_ii!i_ii!_i!i!i!iiiii!ii[iii_)_i_)_i_i)_i_iii_)_)i_i)_i)i___
[urapntcs _ii!)iiiiiiiiiiii!iiiiiiiiii)i!i!iiiiii!i!iii!iiii_i[:iiiiii:!:iliiii:iii_ii:ii:ii:iiii:iiii:iiii

[Interface
I Network [))))!))i)))))il))))))i)))))))ii))i)i__ii))i))i

] Interface : j)_ii_))))_i)i_)l))l))_!)i)ii)!)))_))l)_)))_i_)))6l)))_)))))_))i))))))))_)))_)_)__K)i))!))))_l
I user'

Interface ::::!iii:/:i::i!::i!::i!::i!ii::::::iilii::::i::::]i)::i::::i::lii[effii"_[i::i::i::::i::iii::i::
_i_i_i_i_:;_ii_ii_:i_i_:i_i_)!_!!!_!_!!!iiii!..'._i_i_!_i_i_li_i_:_!_i_i_!_i_i_!!_!iii!_i_i_i_i_i_!_i_i_!_
iiiiiil)::i))ili_)::!)i::_::ii::i)::i!i)ii::iiii::)::)::ii)ii)iiii!iiiiiliiiii::i:::/:::i::

Legend:

Application
S

user
and

System
Applications

The operating system interface is extended to indicate access by custom

interfaces.

Configuration Management and Security is extended to indicate access

by system and user applications.

Figure 5-2 Concept Executive Contents

As described, the goals of the Concept Executive are standardization, system integration and ap-

plication support, and environment control. Each goal and the subsystems which satisfy the related

requirements are described in more detail in the following subsections.

5.3.1 Standardization

In order to achieve the expandability and interoperability advantages of using workstations, it is

necessary to develop portable software. The Concept Executive will support development of por-

table applications by the following:

• Use of standards - the Concept Executive and the interface which it presents to appli-

cation programmers will be standardized. The Concept Executive itself will be porta-

ble, with the caveat that the executive may use certain features to obtain real-time re-

sponse. The interface presented to application programmers will be totally standard

and will allow development of 100% portable applications.

• Function isolation - although based on standards, the Concept Executive must still pro-

vide a real-time environment. Due to this, certain non-standard functions may be re-

quired in order to achieve real-time performance. For such functions, the Concept Ex-

ecutive will present standard interfaces which isolate the non-standard functions. In

this way, applications will be isolated from system-specific functions.

Page 5-3 Workstation Executives

Concept Executive Contents Concept Executive

• Configuration independence - to be truely portable, the Concept Executive must sup-

port transparent operation in a variety of configurations. The Concept Executive makes

no assumptions about the arrangement of the global networks or the workstations them-

selves. The Concept Executive will support several configurations which adequately

meet the real-time requirements.

• Future standards directions - the drive for open systems is a relatively new concern for

which complete standards are not yet available. The Concept Executive shall use inter-

im standards with the goal in mind of migrating to final standards when actually avail-

able.

All of the standards upon which the Concept Executive is based are taken from or represent logical

progressions from the standards specified by the HISDE prototype. Additional standards which

had not been finalized during development of the HISDE prototype will be specified for the Con-

cept Executive.

5.3.2 System Integration and Application Support

The second goal of the Concept Executive is to present an integrated and functional interface to the

application programmers of the environment. This standard-based interface will support the entire

spectrum of system and application requirements in the environment. The different areas of func-

tional support include:

• Processing of flight data - the Concept Executive will provide real-time services which

simplify the following:

Real-time access to flight data.

Real-time display of information.

Real-time command generation (subject to centralized validation).

For many application programmers, these functions address the primary functional re-

quirements for flight support (from a user's perspective). For this reason, the Concept

Executive will provide additional interfaces which simplify use of these functions.

• Networking - the Concept Executive will provide a complete set of services which al-

low transparent access to the network(s) of the environment.

• Graphics - the Concept Executive will provide a complete graphics environment. This

will include a graphic based user interface, data display mechanisms, and high-level

plotting and modeling software.

• Programming languages - the Concept Executive will provide access to system and ex-

ecutive services via a standard programming language. Limited support will be avail-

able for additional languages.

• Command line interpreter - the Concept Executive will provide control of the operating

system via a command line interface.

• Distributed processing support - the Concept Executive will provide functions which

transparently implement the advantages of distributed processing. These include:

Fault tolerance and automatic recovery.

Automated distribution of processes.

• Events - the Concept Executive will support acquisition, local distribution, and the abil-

ity to initiate events.

Page 5-4 Workstation Executives

Assumptions Concept Executive

• System state - the Concept Executive will provide a set of functions which allows the

user to query and modify the state of the system.

The described functions will be provided via a set of libraries to be used by programs and com-

mands available for access via the command line interpreter.

5.3.3 Environment Support and Control

The final goal of the Concept Executive is to present an environment which is stable and secure

during operations. The target system supports critical flight activity and as such, it is imperative

to insure that all system and application software has been fully tested, is the correct release, and

corresponds to the current activity. These goals are achieved via:

• Configuration Management - Configuration Management (or CM) guarantees the con-

figuration during software development and during operations. Configuration Manage-

ment also insures that certain functionality is removed or controlled during operations.

• Security - the security system complements the Configuration Management system, as

it is obviously impossible to guarantee the configuration unless users are prevented

from purposely or inadvertently modifying it.

Although Environment Support and Control functions may appear to be a burden to application de-

velopment, these functions provide useful services such as software archive and insuring that up-

to-date libraries are used for application development.

5.4 Assumptions

This section discusses assumptions made about the environment and how the Concept Executive

will depend upon, interact with, and support systems. In doing so, the scope of the Concept Exec-

utive is addressed in more detail.

5.4.1 Assumed Global System Functions

This section addresses functions which are assumed to be performed by external hardware and soft-

ware subsystems which affect the operation of the entire environment.

5.4.1.1 Simulations

The Concept Executive shall not be responsible for generation of simulation data. The Concept

Executive assumes that during a simulation, simulated data is fed into the entire system at a high

level which allows all host and workstation-based subsystem functions to be tested in an integrated

fashion. In this manner, a simulation proceeds exactly the same as actual operations, except that

the data used is simulated.

The Concept Executive also assumes that the simulation system shall have the capability to intro-

duce anomalous data in order to verify that applications can identify such conditions.

5.4.1.2 Network Mode Selection

The Concept Executive assumes that the current mode of the system (development, simulation, op-

erations) will be determined by the state of the global networks. This is logical, as the data and the

operation to which it corresponds is what determines the function of the system at any given time.

Page 5-5 Workstation Executives

Assumptions Concept Executive

v

5.4.2 Data Distribution

This section describes systems responsible for generation and distribution of data to the worksta-

tions via the global network(s).

5.4.2.1 Real-time Data Generation

The Concept Executive shall not be responsible for generating the real-time data which is present

on the global network(s). The Concept Executive assumes that another system will distribute the
data in a broadcast manner such that it is available to all workstations connected to the global net-

work.

The Concept Executive shall assume responsibility for distribution of data to workstations not di-

rectly connected to the global network. This may be necessary to support different workstation

configurations (such as diskless nodes).

The Concept Executive assumes that another system will provide raw real-time data on this net-

work. The Concept Executive also assumes that if required, another system will generate real-time

data which has been decommutated and error checked. This function will be handled by a host or

a system separate from the control of the Concept Executive.

5.4.2.2 Real-time Data Retention, Archiving, and Playback

The Concept Executive shall not be responsible for retaining and archiving real-time data for later

playback and trend analysis. The Concept Executive assumes that a host will perform this function

and will provide functions which facilitate playback of archived data.

5.4.2.3 Generalized Data

The Concept Executive shall not be responsible for generating generalized data which is required

by other workstations. The Concept Executive assumes that if various categories of general data

are required, they shall be computed on a separate host system and will be made available to the

workstations via the global network.

The Concept Executive is responsible for providing interfaces which allow retrieval of general
data.

5.4.2.4 Test Activity

The Concept Executive assumes that all forms of data will be available for basic testing purposes

during development mode.

5.4.3 Assumed Host Functions

This section describes functions which are the responsibility of a host or cluster of hosts. A host

is assumed to provide logically centralized functions or data which is required by all or the majority
of workstations.

The Concept Executive makes no assumption as to the architecture or vendor used for the host sys-

tems. Such hosts may be based on UNIX or any other operating system. There will most likely be

a collection of hosts which run the operating system most appropriate for the associated applica-
tion.

Page 5-6 Workstation Executives

Assumptions Concept Executive

5.4.3.1 Spacecraft Commands

The Concept Executive assumes that the majority of the functionality relating to spacecraft com-

mand generation will be performed on a host system. Validation of spacecraft commands logically
resides on a centralized host where commands may be compared to a database of valid commands.

The Concept Executive shall provide an interface which allows real-time transmission of a space-

craft command to the appropriate host. This will be a simple interface which primarily handles the

network transmission.

The Concept Executive shall not be responsible for presentation of different interfaces which allow
interactive selection of commands. Such interfaces may include manual entry of text or presenta-

tion of graphics control panels. Such interfaces will be developed as system applications above the

Concept Executive.

5.4.3.2 Network Management

The Concept Executive shall not be responsible for management of the global networks which con-

nect the workstations. The Concept Executive assumes that this function will be performed by a

separate host system which analyzes network traffic and identifies problems.

The Concept Executive shall support introduction of interfaces which allow network statistics to

be collected for the workstation. This information will be required for network management and

for local load analysis.

The Concept Executive shall not be responsible for providing an intuitive interface which allows

local users to review the current network status. The Concept Executive will provide interfaces to

allow this application to be developed.

5.4.3.3 Health and Status

The Concept Executive shall not be responsible for managing the health and status of the worksta-

tions. The Concept Executive assumes that this function will be performed by a separate host or

workstation which analyzes statistics from workstations, isolates problems, and interacts with the

Concept Executive to take corrective actions. Status assessment is a logically centralized function

which relies upon a large database of fault information (expert system) required to diagnose and

predict failures.

The Concept Executive shall provide interfaces which allow health and status statistics to be col-

lected for the workstation. This information will be required for global health and status and for

local load analysis.

The Concept Executive shall not be responsible for providing an intuitive interface which allows

local users to review the current health and status of the workstation. The Concept Executive will

provide interfaces to allow this application to be developed.

5.4.3.4 Configuration Management (CM) Workstation

The Concept Executive shall assume presence of an intermediary workstation which is responsible

for compiling and loading application programs with certified libraries and software in preparation

for certification. The basic process for certification is:

• Develop and test locally an application.

• When ready for final or simulation testing, submit the application source code to the
CM Workstation.

Page 5-7 Workstation Executives

Assumptions Concept Executive

• Retrieve loaded executables and perform additional local testing to insure that use of

certified libraries did not introduce any problems.

• Upload the application (source and object code) to the CM host for archival and later

download purposes.

• During simulation or operations modes, download the required applications.

• Use applications for simulation or operations.

The presence of the CM Workstation significantly affects the requirements of the Concept Execu-

tive, as the interaction with the archive host is be handled by the CM Workstation. The Concept

Executive is therefore only responsible for communications with the CM Workstation, which is

straight-forward as it is a UNIX system.

5.4.3.5 Certified Application Archive

The Concept Executive shall not be responsible for archiving of certified system and application

software. A "certified" application is one which has been fully tested and approved for use during

operations.

The Concept Executive is responsible for providing interfaces to allow access to the software in

this archive.

5.4.4 Executive Assumptions

This section discusses functions provided by subsystems present on the workstation, but which are

not within the scope of the Concept Executive. The scope of the Concept Executive is a subjective

matter, so justification is provided for why certain functions axe to be handled by higher level soft-

ware.

5.4.4.1 Simplification Functions

The Concept Executive shall not provide a global set of custom simplification functions which pro-

vide more convenient interfaces to operating system, networking, graphics, and other functions.

The Concept Executive provides an interface which is suitable for use by applications program-

mers, who are assumed to be satisfied with existing standard interfaces. Past history has proven

that attempts to simplify use of UNIX and other interfaces has introduced more problems than were
solved.

The Concept Executive simplifies and tailors use of the environment by selecting standard soft-

ware which provides networking, graphics, and other required functionality. From a functional

standpoint, the only custom simplification interfaces provided by the Concept Executive are for

data acqusition. This is necessary, as data distribution is critical to the majority of applications de-

veloped in the environment.

5.4.4.2 Data Driven Displays

The Concept Executive shall not provide an application which is used to design and manage data-

driven displays. Such an application is a requirement in the environment, as textual and graphic

presentation of telemetry data is a primary requirement. However, this application is not within

the scope of the Concept Executive.

The Concept Executive provides the basic data acquisition and graphics required to support devel-

opment of a data display application.

Page 5-8 Workstation Executives

Assumptions Concept Executive

5.4.4.3 Custom Command Languages

The Concept Executive shall not provide a custom command language which replaces or masks

the native operating system command line interface (the UNIX shell). The Concept Executive

specifies use of the UNIX shell for command-based interaction. If a custom language is desired,

the Concept Executive presents an interface upon which one could be developed.

5.4.4.4 Local Interfaces to Host Functions

The Concept Executive shall not provide new interfaces to host specific functions. The Concept

Executive provides the required network interface to allow data and control to be exchanged be-

tween the workstation and the host. The Concept Executive assumes that higher-level applications

will provide suitable interfaces for host functions.

5.4.4.5 User Interface

The Concept Executive shall provide for programmatic and command line interfaces to functions.

The Concept Executive also provides a basic COTS based user interface upon which applications

may be developed. The Concept Executive shall not be responsible for presentation of a graphic

user interface to executive functions.

The Concept Executive shall provide interfaces which allow development of graphic user interface

applications. The Concept Executive provides all the tools necessary to develop and set the stan-
dard for the user interface. The user interface should be one of the first set of applications to be

developed as it will establish the basic behavior of all other user interface applications in the envi-

ronment.

5.4.4.6 On-line Help

The Concept Executive shall not provide a graphic user interface for on-line help. The Concept

Executive shall provide on-line help, but this information shall be available via the native com-
mand line interface.

Page 5-9 Workstation Executives

Overall System Requirements Functional Requirements

6.0 Functional Requirements

This chapter presents the functional requirements of the Concept Executive. These requirements

specify a software system which will satisfy the goals of standardization, system integration and

application support, and environment control. The functional requirements which satisfy these pri-

mary goals are divided into the following:

• Overall System Requirements.

• COTS Subsystem Requirements.

• Custom Subsystem Requirements.

The COTS subsystems specified by the Concept Executive provide a baseline which supports the

common development and operational requirements of all applications. The custom subsystems

specified by the Concept Executive provide environment control and additional application-spe-

cific functionality.

6.1 Overall System Requirements

This section describes functional requirements which express design guidelines, set the direction,

or provide functionality which affects the Concept Executive as a whole.

6.1.1 Workstation Based Distributed Processing

The Concept Executive shall provide a distributed development and operations environment which

controls and integrates a network of graphic workstations. The Concept Executive shall allow each

workstation in the network to function as an application processor for a portion of the ground-based

support requirements.

6.1.2 Generic Environment Support

The Concept Executive shall specify requirements at a level which supports multiple ground-

based, spacecraft support environments. The target environments include, but axe not limited to

the following:

• Short duration flights - flights for which the duration is less than 30 days (1 month).

This includes support for multiple simultaneous short duration flights. The Concept

Executive assumes that in the event of multiple flight support, all spacecraft are very
similar.

• Continuous duration flights - long-term flights for which continuous support must be

provided.

The Concept Executive shall support environments currently in use and those planned for the fu-
ture.

6.1.3 Identical Operational Environment

The Concept Executive shall present the same development and operational environment on every

workstation in the network. The primary motivation of this requirement is to insure that if one

workstation fails, the affected users can utilize any other workstation in the network. By providing

a reasonable set of unused workstations, the environment will offer a means of manual fault toler-

ance.

Page 6-1 Workstation Executives

Overall System Requirements Functional Requirements

6.1.4 Workstation Hardware Expandability and Interoperability

The Concept Executive shall offer an extended environment life cycle by insuring expandability

and interoperability via the use of software standards. The Concept Executive shall specify a sys-

tem which is expandable in each of the following ways:

• Addition of new processors - the Concept Executive shall support increased processing

requirements via the addition of new workstations. This shall be true to the bandwidth

limits of the global communications networks which interconnect the workstations.

• Upgrade of processors - the Concept Executive shall support increased processing re-

quirements by allowing workstations to be upgraded with newer, more powerful com-

ponents. The Concept Executive shall allow upgrade of processors, disks, graphics de-

vices, other peripherals, and the entire workstation.

The Concept Executive shall allow upgrade of workstations from the same or a different vendor.

The Concept Executive shall allow seamless upgrade to any workstation which supports the de-
fined standard software environment.

6.1.5 Real-Time Response

The Concept Executive shall be based on a real-time operating system which has been demonstrat-

ed to provide deterministic response adequate to support all time-critical applications in the target

environment.

The requirement for real-time response shall be balanced with the subsequent requirements for use
of Commercial-Off-The-Shelf (COTS) and standard software. The Concept Executive shall pro-

vide real-time response while at the same time utilizing standard software.

6.1.6 Use of Commercial-Off-The-Shelf Software

The Concept Executive shall utilize as much COTS software as is possible within the real-time

constraints of the target environment. The Concept Executive specifies use of COTS software in

order to:

• Reduce development and support costs.

• Present a standard environment.

• Provide a robust system.

COTS software shall be used to entirely satisfy or form the basis of the majority of the subsystems

making up the Concept Executive. The COTS software subsystems specified by the Concept Ex-

ecutive shall include, but not be limited to the following:

• Operating system.

• Executive and application programming languages.

• Command line interface.

• Real-time extensions.

• Networking.

• Graphic user interface (window system).

• Graphics.

Page 6-2 Workstation Executives

Overall System Requirements Functional Requirements

The Concept Executive shall not specify any COTS software subsystem which is not a widely

available standard and is in turn acknowledged and implemented by a wide variety of workstation

vendors.

6.1.7 Use of Standard Software

The Concept Executive, to the extent possible in a real-time environment, shall use software stan-

dards. Use of standards will allow the Concept Executive to support a variety of workstations and

to easily port to new workstations as they become available. The standard software subsystems

shall include, but will not be limited to the following:

• Operating system.

• Executive and application programming languages.

• Command line interface.

• Real-time extensions.

• Networking.

• Graphic user interface (window system).

• Graphics.

All standards specified by the Concept Executive shall be implemented in layers which allow ap-

plication programmers to select the layer which best suit their convenience and performance re-

quirements.

All implementations of standards used by the Concept Executive shall be verified by a formal test

suite which is complete and widely used by the industry. No standard implementation shall be used

which does not pass such a test suite.

6.1.8 Migration to POSlX

The Concept Executive shall present a programmatic and interactive interface which is fully com-

pliant with the Portable Operating System Interface Definition (POSIX) standard defined the In-

stitute of Electrical and Electronic Engineers (IEEE). POSIX is a standard which specifies all in-

terfaces to the operating system and related support software (networking, real-time functions,

etc.). POSIX shall be used as it is the only interface which is globally accepted and is independent

of the direction of any single vendor. This as opposed to offerings from UNIX International 0dI)

and the Open Software Foundation (OSF) which are driven by certain vendors.

At this time, the entire POSIX standard is not yet defined and it will be several years before the

standard is complete. The Concept Executive shall select standards which are compliant with the

current direction of POSIX in order to allow a clean migration path in the future. As portions of

POSIX are completed, the Concept Executive shall verify that the specified standards remain fully

compliant.

6.1.8.1 POSIX Description

The goal of POSIX is to provide application portability across a number of operating systems, in-

cluding those not based upon UNIX. The complete POSIX standard is defined as follows:

• POSIX 1003.0 - Overall specification of POSIX.

Page 6-3 Workstation Executives

Overall System Requirements Functional Requirements

• POSIX 1003.1 -

• POSIX 1003.2-

• POSIX 1003.3-

• POSIX 1003.4-

• POSIX 1003.5 -

• POSIX 1003.6-

• POSIX 1003.7 -

• POSIX 1003.8-

• POSIX 1003.9-

System interface.

Command line interface.

Verification testing.

Real-time interface.

Ada bindings.

Security interface.

System administration interface.

Network interface.

FORTRAN bindings.

P1201 - X Windows-based graphic user interface (not part of POSIX, but is closely re-

lated and is only standard addressing graphic user interfaces).

POSIX is currently not a fully defined standard. At this time, only POSIX 1003.1 is complete. The

1003.1 standard specifies only the programmatic interfaces to the operating system (the equivalent

of UNIX system calls). Completed standards are not yet available for command line, network,

real-time or other functional interfaces. These interfaces are being addressed by working groups,

each of which is at a different level of completion. Although some working groups are nearing

completion, it will be several years before the complete standard is available and implemented on

a variety of systems.

It is very important to note that POSIX is not an implementation of an operating system. Rather it

is a specification of the programmatic and command-level interfaces. This allows for a wide vari-

ety of fundamentally different operating systems to provide a POSIX interface and therefore allow

development of portable applications.

The reference model for the POSIX interface is the UNIX operating system. The majority of

POSIX interfaces closely match existing UNIX interfaces and behavior. Therefore, the most ap-

propriate operating system selection for environments desiring future POSIX compliance is UNIX.

6.1.9 Isolation of All Non-Standard Functions

The Concept Executive shall isolate any and all vendor/hardware-dependent functions, if such

functions are required to provide an application support function. If any vendor/hardware-depen-

dent functions are required, the Concept Executive shall prevent a new interface which masks the

vendor/hardware dependent functions and therefore will allow development of portable software.

If the vendor/hardware-dependent function represents a function to be present in a forth-coming

standard, then the interface presented by the Concept Executive shall mimic the calling sequence

and the behavior of the standard function. This requirement may be necessary for support of real-

time functions, as there is no standard yet defined.

6.1.10 Executive Portability

The software comprising the Concept Executive shall be very portable. The only portions of the

Concept Executive which are not portable shall be those using vendor/hardware-dependent func-

tions in order to provide required application support which is not otherwise available via standard
interfaces.

Page 6-4 Workstation Executives

Overall System Requirements Functional Requirements

v

6.1.11 Application Portability

The Concept Executive shall provide an application program interface (API) which allows devel-

opment of completely portable applications. All system and user applications developed on or

above the executive shall be completely portable to other systems which support all standards de-

fined by the Concept Executive. The API will be a collection of standard COTS and custom func-

tions.

The Concept Executive shall prevent (via Configuration Management) application programmers

from using (loading) non-standard functions in applications.

6.1.12 Modifications to COTS Software

The Concept Executive shall provide all functionality without requiring modifications to the oper-

ating system or any other COTS software. Modification of COTS (MODCOTS) software shall not

be required unless there is no other manner in which a required service can be provided. The Con-

cept Executive shall only use modified COTS software after all alternative approaches have been

proven ineffective.

Use of modified COTS software is to be avoided as it introduces serious software portability prob-

lems. Although one vendor may provide the required modifications, other vendors may refuse or

only do so at a significant cost. Use of modified COTS software also introduces additional support

costs, as vendors must provide special support for the unique versions of otherwise-COTS soft-

ware.

6.1.13 Software Subsystem Support

All software subsystems comprising the Concept Executive shall be supported. All COTS sub-

systems shall be supported by the appropriate vendors. All custom software shall be supported by

the developer of the Concept Executive. The Concept Executive shall not use any software which

is not fully supported and for which clear responsibility may be defined.

The Concept Executive shall not utilize any unsupported, public domain software. If a public do-

main, non-vendor supplied software system is absolutely required, then it shall be interpreted as

custom software which is the sole responsibility of the Concept Executive developer.

6.1.14 Configuration Independence

The Concept Executive shall be hardware, vendor, and configuration independent. In addition to

using standard software, the Concept Executive shall support multiple workstation configurations.

The Concept Executive shall not rely upon and base its design on any specific workstation config-

uration, especially if this configuration is not supported by a variety of workstation vendors. Such

a design, even if based on standards, would not allow the goal of interoperability to be achieved.

For more information on configuration independence, refer to the section on distributed process-

ing.

6.1.15 Global and Local Network Independence

The Concept Executive shall be not depend on a specific configuration of the global network(s).

The Concept Executive shall function identically whether or not the global network consists of one,

two, or more physical networks. The Concept Executive shall mask such details from application

programmers and therefore allow the global network configuration to change as needed by new

processing requirements or allowed by the introduction of new technology. In particular, the Con-

Page 6-5 Workstation Executives

Overall System Requirements Functional Requirements

cept Executive shall support transparent communications over the following global network con-

figurations:

• 1 physical network supplying all real-time and general purpose data.

• 2 or more physical networks which are divided based on the type of data on each net-

work. For example, one network for broadcast, read-only real-time data and another

network for multicast and point-to-point, read-write, general purpose data.

• 2 or more physical networks which are divided in order to support multiple concurrent

operational activities (multiple simultaneous flights).

• 3 or more networks which are divided to support a combination of the previous two

configurations. A reasonable configuration would be one in which one network is used

to support all streams of real-time data while 1 additional network is provided for gen-

eral purpose support of each concurrent activity.

The Concept Executive shall specify network standards to be used for workstation to workstation

communications. Ideally, all data output on the global networks will use the same communication

protocols. Unfortunately, the Concept Executive cannot define the protocols used by systems gen-

erating real-time and host-specific data. In such instances, the Concept Executive shall adapt itself

in order to process the different protocols. The Concept Executive shall in turn present all data in

a standard manner through a common interface (data acquisition).

6.1.16 Data Throughput Increases

The Concept Executive shall be designed to expand to support throughput processing of increas-

ingly large amounts of data. This is necessary to support the data processing requirements of new

on-board systems, multiple simultaneous spacecraft, or even entirely new spacecraft. The Concept

Executive shall not use any technology or design which would be obsolete in event of a substantial

increase in data throughput requirements. In order to support an extended life cycle, all subsystems

comprising the Concept Executive shall allow for order of magnitude increases in the amount of

data generated for a spacecraft.

6.1.17 Modes of Operation

The Concept Executive shall not depend on physically separate systems for development and op-

erations. Such a system, while offering some advantages, would be too costly to use due to the

duplication of hardware and software. Rather, the Concept Executive shall support different oper-

ation states on the same physical networks and workstations. The three different modes of opera-

tion are as follows:

• Development - in which application software is developed and preliminary testing is

performed. The goal of development mode is to present a flexible and complete envi-

ronment in which application software may be developed. Development mode will also

be used to integrate a new workstation into the network.

• Simulation - in which application software is tested in an integrated fashion with sim-

ulated data. The goal of simulation mode is to present an environment which is func-

tionaUy identical to operations, except that the data (and corresponding flight) is simu-
lated.

Page 6-6 Workstation Executives

Overall System Requirements Functional Requirements

• Operations - in which a flight is active and being supported by the system. The goal of

operations mode is to present an environment which is well-controlled and in which

only certified applications are allowed to execute.

In order to support different operational modes on the same set of physical hardware, different con-

figurations and rules will be followed to define and provide an environment suitable for the current

operation. The makeup of each mode will be defined and enforced by the Configuration Manage-

ment and Security subsystems. The specific requirements for each mode will be discussed in more

detail in these sections.

6.1.18 Support of Multiple Modes

The Concept Executive shall support different workstations being in different operating modes.

The Concept Executive supports continuous duration and multiple concurrent flights being active

on the system (described in the next sections). In each environment, the system has an activity

which is in a constant critical operating state. There will never be sufficient down-time (no oper-

ational activity) to add new systems or develop and test new software. This creates the requirement

for multiple modes to allow new hardware to be introduced and new software to be developed and

tested in order to effectively maintain the system.

The Concept Executive shall support a single mode of operation on any given workstation. Sup-

port of multiple modes on a single workstation is not reasonable considering security and config-

uration differences between the modes. That is to say, an individual workstation shall not be able

to run different modes simultaneously, but different workstations can be concurrently executing in

different modes of operation. Although a given workstation will always be in a single mode, the

entire system shall be multi-mode as interpreted by the Concept Executive.

In supporting multiple modes, the Concept Executive shall not allow a workstation in a non-oper-

ations mode (development or simulation) to adversely affect the global network or other worksta-

tions. The precise capabilities for each non-flight mode are discussed in more detail in the Con-

figuration Management section.

The primary advantage to allowing multiple modes in the system is to support software develop-

ment during continuous duration or constant, overlapping short-term flight activity. In each in-

stance, it will be necessary to introduce new hardware and system/application software to the en-

vironment. This will only be possible if development mode workstations are allowed to effectively

develop software, upload the software to central archive, and use simulation mode integrated test-

ing. Multiple modes also allows integration of new workstations and other hardware components

into an operational environment. While workstations and new software would not be added to a

stable system, this may be required to satisfy new requirements or to replace failed systems.

6.1.19 Concurrent Flight (Operation) Support

The Concept Executive shall provide support for multiple concurrent spacecraft flights at the indi-

vidual workstation level. Concurrent flights implies that before one flight terminates, another

flight begins in such a way that there would not be a time when there are no active flights. Con-

current flight support implies that each individual workstation shall have the capability to simulta-

neously support multiple flights. In such an environment, The Concept Executive shall not require

physically separate workstations to support separate flights.

The ability of the Concept Executive to support concurrent flights in this manner is entirely depen-

dent on the capabilities of the global networks. It is possible that due to network bandwidth or

Page 6-7 Workstation Executives

Overall System Requirements Functional Requirements

workstation hardware limitations, that it is impossible to provide a single workstation with all data

necessary to support concurrent flights. It is also possible that an entire sub-network of worksta-

tions is similarly constrained. Despite this, the Concept Executive shall not impose any worksta-

tion-level limitations on the ability to support concurrent flights. The Concept Executive shall sup-

port this requirement in the most flexible manner.

The Concept Executive shall allow simultaneous access of data from multiple flights. This allows

a user to simultaneously monitor and compare data from similar systems on separate flights. This

implies that all data, displays, and commands are tagged with the corresponding flight identifier.

Support of multiple flights on a single workstation will allow users more control over the partition-

ing of resources dedicated to support of flights. A less flexible solution would be to only allow

support of one flight per workstation. This would force the user to log in and out of the workstation

to support different flights. An even less flexible solution would be assign sets of workstations to

support separate flights (i.e., if there are 10 workstations, 3 could be assigned to one flight and 3

to another). Both solutions are less flexible and would prevent a user from effectively managing

workstation resources.

6.1.20 Continuous Duration Flight Support

The Concept Executive shall provide support for continuous duration operations. In order to pro-

vide this type of support the Concept Executive must allow for the integration of new workstations

and development of new system and application software. These requirements are supported by

the multi-mode capability of the Concept Executive.

6.1.21 Programmatic and Command Level Interfaces

The Concept Executive shall present a complete programmatic and command level interface. The

Concept Executive shall provide a set of ANSI C language compatible libraries to be used by ap-

plication programmers. The Concept Executive shall provide a set of commands which are com-

patible with the UNIX command line interpreter.

The Concept Executive also provides a completely COTS based graphic user interface which

forms the basis for the interface presented on the bitmapped workstation displays. The Concept

Executive shall provide an interface whereby the UNIX command line interpreter is executed in

this environment and therefore allows execution of commands provided by the Concept Executive.

6.1.22 Support of ASCII Terminals

The Concept Executive shall support limited use of ASCII terminals. ASCII terminals are an in-

expensive means of interfacing with the system to perform system maintenance and support of the

workstation graphic displays. Concept Executive provides commands which are compatible with

the native UNIX command line interpreter. This supports limited use of ASCII terminals. "Lim-

ited" support of ASCII terminals shall be interpreted as all interfaces and commands which are not

associated with display of data.

6.1.23 Resource Utilization

The custom subsystems of the Concept Executive shall make efficient use of all standard functions

available through the operating system and other COTS software. The Concept Executive shall

not require unreasonable system resources.

Page 6-8 Workstation Executives

COTS Subsystem Requirements Functional Requirements

During a mode of operation in which the Concept Executive is initialized, a user is currently logged

in, but no activity is taking place, the Concept Executive shall not use more than an average of 5

percent (5%) of the total available processing, network, or peripheral access capability. In measur-

ing this value, the period in which the average is taken shall be at least 15 minutes to insure that

the measurement is not skewed.

6.1.24 Application Termination

During normal or abnormal termination of a Concept Executive custom application, all necessary

clean up actions shall be performed. This includes, but is not limited to deallocation of dynamic

resources, proper closing of files, and clean up of all external data structures semaphores, shared

memory, etc.).

After normal or abnormal termination, it shall be possible to restart the failed process. Failed pro-

cesses shall not terminate in such a manner which prevents subsequent use.

6.1.25 Error Handling and Reporting

In event of an error, the Concept Executive shall take the appropriate action. A non-fatal error shall

not cause any Concept Executive process to terminate.

All serious errors shall be logged by the Concept Executive. A log file shall be maintained for anal-

ysis of such errors.

6.1.26 On-line Help

The Concept Executive shall provide on-line help for all COTS and custom interfaces. This in-

eludes all programmatic and command line interfaces. The on-line help shall be compatible with

the native UNIX help command ("man"). All help text shall conform to the format established for

UNIX "man" pages.

6.2 COTS Subsystem Requirements

This section discusses requirements which are satisfied by COTS software products. All COTS

subsystems represent industry standards which will be available on a wide variety of workstations.

The COTS subsystems combine to specify the basic operating environment upon which the custom

Concept Executive subsystems will be developed. The COTS subsystems within the Concept Ex-
ecutive are as follows:

• Operating system.

• Programming languages.

• Command line interface.

• Networking.

• Graphic user interface (window system).

• Graphics plotting and modeling.

• Real-time extensions.

Each COTS subsystem will be described in more detail in the following sections. For each sub-

system, the Concept Executive will specify all requirements and then will recommend a specific
standard.

Page 6-9 Workstation Executives

COTS Subsystem Requirements Functional Requirements

6.2.1 Operating System

The Concept Executive shall be developed in and provide access to the UNIX operating system.

Use of UNIX is assumed, as it is the primary operating system used on engineering-class worksta-

tions. UNIX is widely viewed as a standard operating system, provides a very powerful develop-

ment environment, and provides a clean migration path to POSIX (as POSIX is based on a UNIX

interface). The only question concerning use of UNIX is which variant and release shall be used.

6.2.1.1 Recommended Standard

At this time, it appears that two variants of the UNIX operating system will compete for market

share. These are System V Release 4 (SVR4) from UNIX International (UI) and OSF/1 from the

Open Software Foundation (OSF). SVR4 is a merge of the best (in the interpretation of UI) fea-

tures of System V Release 3, Berkeley Software Distribution (BSD) 4.3, and Xenix. SVR4 also

includes functionality from Sun's SunOS operating system. OSF/1 is primarily based on the Ad-

vanced Interactive Executive (AIX) operating system developed by IBM. OSF/1 will also use fea-

tures from Mach for multiprocessor support. Mach is an operating system designed at Carnegie

Mellon University.

Development of these two operating systems is welcome in that it provides a means of merging the

functionality of System V and BSD variants of UNIX. It is equally unfortunate that two organiza-

tions are simply recreating the problem by developing two new operating systems. There is no

clear decision in selecting one of these operating systems as the standard for the Concept Execu-

tive. Both operating systems provide surprisingly similar functionality, conform to POSIX, and
include mechanisms for real-time.

Despite the confusion, the Concept Executive shall be developed in and provide access to the Sys-

tem V Release 4 (SVR4) version of UNIX. SVR4 was selected in preference over other UNIX

variants for the following reasons:

• SVR4 will be available in early 1990, as opposed to the OSF/1 operating system offer-

ing from OSF which will not be available for some time.

• SVR4 offers a combination of the best features of the three operating system variants.

SVR4 also includes a number of features taken from Sun's operating system (SunOS).

• Applications developed in System V, BSD, and Xenix will be fully compatible with
SVR4.

• SVR4 satisfies the upgrade path to POSIX.

• SVR4 will offer real-time capability.

• SVR4 is based on robust features, where as OSF/1 is based on unproven technologies.

One disadvantage of SVR4 is that it will include the OpenLook user interface. While this is a use-

ful package, it is not specified by the Concept Executive. The Concept Executive will use Motif,

as is explained in a later section. Although Motif is from OSF, it is more widely accepted and

viewed as a superior product. Motif is also available separately from the OSF/1 operating system

and will appear on many systems supporting SVR4.

SVR4 provides a great deal of functionality. In summary, some of the significant features in SVR4

include the following:

• Standards Support:

- POSIX 1003.1 compatibility.

Page 6-10 Workstation Executives

COTS Subsystem Requirements Functional Requirements

ANSI C.

- TCP/IP, telnet, tip, and smtp.

• System V Release 3.2 features:

Interprocess communications facilities (shared memory, message queues, semaphores).

Streams.

uucp.

Transport Level Interface (TLI).

Remote File System (RFS).

• BSD features:

C shell.

Fast file system.

Selected commands and system calls (including signals).

Symbolic links.

Sockets, remote commands (r* commands) and, inetd.

• SunOS features:

Memory mapping interface from SunOS.

- Network File System (NFS).

- Remote Procedure Calls (RPC).

- EXternal Data Representation (XDR).

• Xenix compatibility.

• New features:

- Streams enhancements.

Internationalization.

Virtual File System.

Kom shell.

Process file system.

Message management.

Dynamic linking (shared libraries).

Network selection.

Name to address mapping.

Mail.

Selection of SVR4 is a logical extension of System V Release 3 which was specified in the HISDE

prototype. Applications developed in System V Release 3 should port easily to SVR4.

6.2.2 Programming Language Interface

The Concept Executive shall be developed in and support development of applications in a widely

available and standard programming language. The programming language used and supported by
the Concept Executive shall:

• Be established as an industry standard and support development of portable applica-
tions.

Page 6-11 Workstation Executives

COTS Subsystem Requirements Functional Requirements

• Support efficient development of a wide variety of system and application programs.

• Function well in a UNIX environment and support interfaces (bindings) to all COTS

and custom Concept Executive functions.

The programming language specified for the Concept Executive is described in the following sec-

tion.

6.2.2.1 Recommended Standard

The Concept Executive shall use and provide access to the ANSI C language. ANSI C is becoming

widely available and should be adopted as a standard in the very near future. ANSI C has been

selected as the standard due its portability and industry acceptance. Applications developed in

ANSI C are normally easier to port than programs written in older Kernigan and Ritchie (K&R) C.

In summary, ANSI C offers the following advantages:

° Compatibility with K&R C - new ANSI C compilers will support applications devel-

oped in K&R C.

° Standard libraries - ANSI C includes a specification of libraries which implement basic

language extensions (input/output, string manipulation, etc.).

• Additional portability - ANSI C specifies a set of headers (include files). This is a ma-

jor improvement for portability of applications, as K&R did not specify headers and in

many instances, header files varied between vendors. The ANSI committee resolved

these differences into one standard that is not controlled by vendors.

ANSI C had not been formally accepted as a standard at the time this document was generated. All

technical details have been resolved, but procedural delays have prevented the standard from being

formally released. Nevertheless, industry has widely accepted ANSI C as the C standard. Accep-

tance is demonstrated by the delivery of compilers based on the ANSI C draft standard and the

adoption of ANSI C in SVR4.

6.2.2.2 C Versus Ada

Specification of the ANSI C language rather than Ada is a difficult decision. This selection is ra-

tionalized by the following advantages of ANSI C.

• POSIX compatibility - the interface model for POSIX is ANSI C.

• Performance - C provides a finer level of control than possible with Ada. Proper use of

C will allow smaller, more efficient programs to be developed.

• Availability of standards - one advantage to using Ada is that the interfaces for features

such as tasks (threads) and I/O are standardized. In the future, such features will be

standardized by POSIX, thus eliminating this advantage.

• Interface bindings - in a UNIX environment, most software systems (graphics, net-

working, etc.) only provide C language bindings (function calls). It is not possible to

write an ADA program which directly calls such functions.

In the future, POSIX will define an environment which supports integrated use of Ada and other

languages. This however will occur several years in the future.

Page 6-12 Workstation Executives

COTS Subsystem Requirements Functional Requirements

6.2.2.3 Additional Language Support

The Concept Executive shall select standards and COTS software which supports application de-

velopment in each user's preferred language. Ideally, the Concept Executive shall provide bind-

ings to all system functions for several standardized languages. However, this is not a feasible re-

quirement at the current time. As described above, the Concept Executive shall only provide ac-

cess to all system interfaces via the ANSI C language.

Although the Concept Executive does not provide a complete set of interfaces, it does not preclude

an application programmer from developing software in other standard languages (such as Ada and

Fortran). Such languages may be freely used in the environment as long as the applications do not

depend on interfaces which may not be present on other systems. Use of other programming lan-

guages shall be limited to isolated functions or stand-alone programs which do not require or use

system interfaces. For example, a C program could be developed to display graphics for calcula-

tion results generated in Fortran functions.

In the future, the Concept Executive shall provide complete access to all system functions for the

following languages:

• Ada.

• FORTRAN.

It is expected that the POSIX 1003.5 and 1003.9 working groups will drive the movement for sup-

port of these languages within a POSIX environment.

6.2.3 Command Line Interface

The Concept Executive shall provide a command line interface to allow interaction with the oper-

ating system, execution of commands, and generation of command line programs (shell scripts).

To satisfy these requirements, the command line interface used could be any one of the following:

• The native operating system command line interpreter (the UNIX shell).

• A new command line interpreter which uses the current command paradigm.

• A completely custom language and command interface (either line or graphics based).

Providing either type of custom language interface has advantages in that it can present commands

which are tailored to a specific application environment, are suited for the targeted users of the sys-

tem, and have embedded control mechanisms for the environment. Development of a complete,

high-level language is a reasonable goal, but one which will require a significant amount of effort.

The disadvantages of providing a custom language are as follows:

° The new language would be unfamiliar to users.

• The operating system interface (the UNIX shell) is known and preferred.

• Creating a new custom language would entail a significant amount of time and effort to

develop.

• Once developed it would add overhead to the command process and slow the response

time.

The Concept Executive shall provide the user with a command-level interface by allowing access

to the native UNIX command line interpreter (the shell). The Concept Executive shall depend on

this COTS command line interface provided by the selected operating system (SVR4). The Con-

Page 6-13 Workstation Executives

COTS Subsystem Requirements Functional Requirements

cept Executive shall not attempt to redefine this interface and present a new command level lan-

guage.

The primary disadvantage of the UNIX shell is that its use is difficult to control. Once the user has
access to the command line, it is possible to execute any command and access any data available

on the system (subject to permissions). This problem will be addressed by Configuration Manage-

ment, which will prevent misuse of commands and data by defining the system file and permissions

configuration.

The Concept Executive does not discourage nor preclude development of a higher-level software

subsystem which provides a new command interface. The Concept Executive provides the basic

functions upon which this new interface could be developed. The new interface could address the

command requirements of the entire environment or be tailored to a specific application (such as

display management or computation generation).

The combination of the command line and the Concept Executive user interface (explained in a

subsequent section) provide an interface which can be expanded to suit the requirements of the en-

vironment. As is, the Concept Executive provides a window-based user interface for which the

basic command interface is the UNIX shell. By developing higher-level software, an environment

can introduce a custom command language interface and/or an intuitive window/icon based inter-

face.

6.2.3.1 Recommended Standard

The operating system specified by the Concept Executive (SVR4) shall provide access to the fol-

lowing command line interpreter (shell):

• Korn shell - a relatively new shell which provides a superset of the functionality found
in the Bourne shell. The Korn shell offers a number of new functions and is completely

compatible with the Bourne shell. Note that by providing the Korn shell, SVR4 indi-

rectly provides the Bourne shell.

The Korn shell is compatible with the Bourne shell, is more efficient than both the Bourne and C

shells, and provides interactive features similar to those found in the C shell. In short, the Korn

shell offers a command environment with all the advantages of the Bourne and C shells. Use of the

Korn shell is also consistent with the shell specification in POSIX 1003.2.

6.2.4 Networking

The Concept Executive shall provide support for the networks connecting the workstations. The

Concept Executive shall provide network communications interfaces which isolate workstation

and global network configuration details and allow development of portable applications. This

support shall not depend on the workstation configuration. The Concept Executive shall include

support for the following network services.

• Connection based communications - a workstation shall be able to transfer data to all

workstations on the network.

• Distributed processing - a workstation shall be able to distribute processing loads to
other workstations within the network.

• Network/workstation status - status of a workstation and network interfaces shall be

available to other workstations in the system.

Page 6-14 Workstation Executives

COTS Subsystem Requirements Functional Requirements

• Electronic mail - a workstation shall be able to generate, deliver, read, print, and delete

mall messages. All messages shall be time stamped and allow message replies. A vi-

sual indication shall be provided to users upon receipt of mall and optionally upon read-

ing of messages sent.

• Directory services - workstations shall provide logical names to physical resources.

This data shall be available to all workstations on the network. All mappings between

logical names and physical resources shall be provided in an ASCII table.

• Remote login - remote login shall be available on a limited basis to support system ad-

ministration. This function shall be compatible with Configuration Management.

• Remote file sharing - remote file sharing shall be available so a complete environment

need not exist at all workstations. The file sharing available to a workstation shall be

controlled by Configuration Management.

All network communication software shall adhere to the Open Systems Interconnect (OSI) seven

layer model. Each requirement will be addressed by specifying a standard which represents 1 or

more layers in this model.

6.2.4.1 Recommended Standards

The Concept Executive network communications software shall be POSIX 1003.8 compliant. This

document is still in draft form, but the various layers are based on ISO/OSI or existing IEEE stan-

dards. The layered approach of ISO 7498 (the classic OSI model) is used. Figure 6-1 summarizes

the OSI layers as referenced in POSIX 1003.1.

Page 6-15 Workstation Executives

COTS Subsystem Requirements Functional Requirements

Layer

7

De_rmption

Applications Layer
ASCE

FTAM

Mail/Message

Job Transfer

t'resentation Layer

Session Layer

Transport Layer

Networg Layer

Ling Layer Control

rhysical Layer

stanaara

ISO DP 8649

ISO DP 8650

ISO DP 8571

CCITT X.400

ISO DP 8831

ISO DP 8832

I_U DI _ 8822

ISO DP 8823

I_U 8326

ISO 8327

I_U 807_
ISO 8073

I_U 8348

ISO 8473

IEEE 802.2

IEEE 802.4

IEEE 802.5

l|Ue

Definition of ASCE

Specification of ASCE

Specification for FTAM
Message Handling System
Definition of Job Transfer

Spec. for Job Transfer Spec.

Uonnection-Uriented t'resen.

tation Service Def.

Connection-Oriented Presen.

tation Protocol Spec.

Basic Connection-Uriented
Session Service Def.

Basic Connection-Oriented

Session Protocol Spec.

•i ransport service peg.
Connection Oriented Trans-

port Protocol Spec.
Networg _5ervice Degtnition

Protocol for Providing Con-
n_tionl_-Mode Network

Service

LOgical Ling Control

Egaernet
Token Bm

Token Ring

Figure 6.1 Network Software Hierarchy

POSIX has been chosen as the networking standard for portability between vendors. It conforms

to the OSI model, so layers are independent with standard interfaces between layers. This keeps

from being locked into one technology or vendor. This also keeps more options open when new

technologies become available, such as Fiber Distributed Data Interface (FDDI) at layer one.

POSIX uses ISO standards as the bases for all layers. This will result in a wider range of industry

support. At the current time the industry is still developing ISO compliant products, but the ex-

pected demand for ISO compliant layers will spur further development.

Layer 7 protocols shall be used to fulf'dl the requirements for the Concept Executive. If layer 7

protocols do not provide the necessary functionality, layer 4 shall be used. Below is a summary of

the layer 7 protocols:

• File Transfer and Management (FTAM) - provides services for a virtual file system.

This functionality includes the creation, manipulation, and deletion of files. Also, sin-

gle records within files may be accessed using FTAM.

• Job Transfer and Manipulation (JTM) - is designed to support computer to computer

communications for the purpose of performing work remotely.

Page 6-16 Workstation Executives

COTS Subsystem Requirements Functional Requirements

• CCITT X.400 - provides a standard for mail formatting and routing. Several COTS

packages exist that conform to X.400.

• Virtual Terminal Protocol and Service - provides a standard way to map terminals to

actual data links and a standard means to establish virtual terminal connections. COTS

packages based on this standard provide remote login capability.

• ccrI'I" X.500 - provides directory services to map logical names to physical devices.

• ACSE (formerly CASE) - allows the communication channels to be opened, main-

tained, and released. These services are used by other layer seven applications such as

FTAM.

At the time of this report, ISO does not support remote file sharing. POSIX is considering a stan-

dard remote file sharing standard, but this will not be available in the near future. Since SVID is an

interim operating system, the Concept Executive shall use network file sharing (NFS) to share files

between workstations. This is consistent with the Government Open Systems Interconnection Pro-

file (GOSIP) for remote file sharing.

6.2.5 Graphic User Interface

The Concept Executive shall specify a standard graphic user interface (GUI) system which is the

basis for all user interaction on bitmapped workstation displays. The graphic user interface shall

consist of a number of standard COTS libraries and applications which present an environment

suitable for development and use of custom applications.

The graphic user interface provided by the Concept Executive shall be based upon the following:

• Standards - the entire graphic user interface shall be based on a well-defined standard.

All interfaces at all programmatic and interactive levels shall be standardized.

• Client-server model - the graphic user interface shall be based on the client-server mod-

el, in which the server is a process which accepts standard graphics requests and imple-

ments them in the most efficient manner with the available hardware. The server mang-

es and controls interaction for any number of clients. The separation of server and cli-

ent allows the two to reside on separate physical systems.

• Network transparent - clients shall be able to communicate with the server over the

communications network. The only transport requirements are that the mechanism be

reliable (guaranteed delivery, proper order, and no duplication). The transport mecha-

nism may be a fast medium (shared memory) for local access or any reliable transport

protocol for network communications (TCP/IP or OSI).

The Concept Executive graphic user interface shall also provide a layered collection of interfaces

which allow efficient development of graphic user interfaces. Each interface layer shall be based

on and compatible with all lower layers. Use of several layers allows applications to interface in

a manner consistent with performance and development requirements. The interface layers pro-

vided shall include the following:

° Low-level interface - a direct programmatic interface to the low-level graphics func-

tions which are the basis for the graphic user interface.

• User interface toolkit - a higher-level programmatic interface which implements basic

user interface objects such as, but is not limited to menus, labels, text fields, buttons,

Page 6-17 Workstation Executives

COTS Subsystem Requirements Functional Requirements

scrollbars, and popup-windows. This toolkit shall be expandable to allow application

programmers to add new, application-specific objects.

• User interface language (UIL) - a separate high-level language which allows develop-

ment of graphic user interfaces. Use of the UIL allows graphic user interfaces to be de-

veloped and modified without updates to actual C code.

• Look and feel specification - a basic specification of how a user interface application

interacts with the user. This specification standardizes menu appearance, use of key-

board, colors, and other aspects of interaction. Use of a standard look and feel mini-

mizes training costs and reduces interaction errors.

The Concept Executive graphic user interface shall also provide a set of applications which form

the basis for the interactive environment. This set of applications shall include:

• A window manager - this application allows the user to manipulate any and all windows

on the workstation display. The window manager provides functions such as, but not

limited to resize, move, iconify, raise, hide, and kill.

• Interactive applications - in order to function in a graphic user interface, the system

must provide a set of applications which provide basic interaction services. This set of

applications works with the window manager to provide the basic "desktop" environ-

ment. This set of applications includes, but is not limited to terminal emulation, bitmap

drawing, font creation and maintenance, environment control, display customization,

window information, and display dumps.

The following section discusses the standards which have been selected for these requirements.

6.2.5.1 Recommended Standards

The foundation for all graphics used and provided by the Concept Executive shall be the X Win-

dows standard defined by X Consortium at the Massachusetts Institute of Technology (MIT). The

current X Windows system is Version 11 Release 4. This standard, as defined by the X Consortium

includes the following specifications and libraries:

• X protocol specification - the protocol which is the core of the X Windows system. The

X protocol is implemented in a server and accessed via a layered set of C language li-
braries.

° Xlib library - a C language interface which provides a low-level implementation of the

X protocol.

• Xt library - a C language interface which provides the mechanism for developing

graphic user interface objects (widgets).

The X Windows system satisfies the requirements of standardization, client-server model, and is

network transparency. The Xlib and Xt library satisfy the requirements of a low-level library and

the foundation for a toolkit. This however does not represent a complete environment, so the Con-

cept Executive shall specify additional standards.

At this time, there is no industry wide standard for higher level programmatic and interactive in-

terfaces which are based on X Windows. Two directly competing organizations (UNIX Interna-

tional (UI) and Open Software Foundation (OSF)) are proposing different standards. UI is propos-

ing the OpenLook interface while OSF is proposing Motif. Each interface satisfies several of the

Concept Executive requirements and has inherent advantages and disadvantages. It is again unfor-

Page 6-18 Workstation Executives

COTS Subsystem Requirements Functional Requirements

tunate however that the industry cannot decide on a single interface. Fortunately, the IEEE P1201

committee is attempting to establish a single standard. The P1201 standard will select one or a

combination of both. Until this time, the Concept Executive shall select the "standard" which is

most likely to become widely accepted.

The Concept Executive shall specify use of Motif to provide several higher level interfaces. This

is a difficult decision, as although OpenLook is to be part of SVR4, Motif is viewed as a better in-

terface. Motif will satisfy several remaining requirements by providing the following:

• Widget set - a complete, robust set of widgets with an attractive 3-dimensional look.

This widget set is widely viewed as the best in the industry.

• User Interface Language (UIL) - a language which allows specification of user inter-

faces. A UIL compiler application is included to generate a data file from a UIL pro-

gram. This data file is used inside an actual program to generate the user interface.

• Window manager - a powerful and flexible window manager which is consistent with

the appearance of the widget set.

• Look and feel specification - a specification of a look and feel behavior which is accept-

able and is compatible with IBM's presentation manager environment used on personal

computers.

The following figure illustrates the relationship of the various user standards specified by the Con-

cept Executive. This figure includes the GKS and PHIGS standards described in the next section.

System and User Applications

MOIl[W lager Library

[_Y
_Y

GKS PHIGS

X Protocol

Figure 6-2 Relationship of Graphic User Interface Standards

The only remaining requirement which is not addressed is that of interactive applications. Neither

the X Consortium nor Motif specifies a suite of interactive applications which may be used as the

basis for normal user interaction. Most X Window system implementations provide a small set of

applications which are modeled after those provided by the X Consortium. However, this set of

Page 6-19 Workstation Executives

COTS Subsystem Requirements Functional Requirements

applications is not a standard and there is no guarantee that they will be provided with any given

workstation system.

At this time, there is no way to specify a standard for this requirement. Therefore the Concept Ex-

ecutive shall specify that the interface be composed of the basic applications provided by the X

Consortium and provided with most X Windows implementations. This set of applications in-

cludes:

• xterm - terminal emulator used to allow normal access to UNIX shell.

• xset/xsetroot - used to set individual and root window characteristics.

• xhost - used to disable and enable remote clients to access server.

• xwd/xwud/xpr - used to dump, display, and print window images.

• xlsfonts/xfd - used to list available fonts and to display a font.

• xdpyinfo - used to obtain information about the current display.

• xkill - used to kill a window and the attached process.

• xwininfo/xlswins - list windows and window information.

• xmodmap - used to modify the keyboard mappings.

• xrdb - used to store resources in the X server.

• xrefresh - used to refresh (clean up) the display.

• bitmap - used to develop bitmaps used for icons and images.

There are additional clients such as clocks, calculators, etc., which axe useful, but not required in

the environment.

6.2.6 Graphic Plotting and Modeling

The Concept Executive shall support integrated use of specialized graphic plotting and modeling

software. The basic function of the graphic user interface is to present and manage user interfaces.

While it supports basic drawing operations such as lines, circles, and boxes, it does not support

complex 2 or 3-dimensional rendering, in which multiple coordinate systems, transformations, and

other functions are required. Such software is required to support development of complex plots,

graphs, models, and transformed images. The Concept Executive shall specify a software system

which provides these functions and is:

• Integrated with the graphics user interface - the specialized graphic software shall be

compatible and will behave properly within the graphic user interface system. The

graphics software will be usable with graphic user interface functions within the same

application. This allows the graphic user interface software to be used to generate the

user interface and the specialized graphics software to generate the desired plots or

models.

• All graphics shall be rendered through the same mechanism as used for the graphics

user interface. This insures that advantages of portability and network transparency.

Page 6-20 Workstation Executives

COTS Subsystem Requirements Functional Requirements

6.2.6.1 Recommended Standards

The Concept Executive shall provide graphic plotting and modeling functionality via the Graphics

Kernel System (GKS) and/or the Programmer's Hierarchal Interactive Graphics System (PHIGS)

standards defined by the International Standards Organization (ISO). Both graphics systems are

widely accepted and available on a number of workstation systems.

GKS is intended to support static, 2-dimensional graphics. GKS is relatively fast (as compared to

PHIGS) and is available in a number of implementations which are compatible (as described

above) with X Windows.

PHIGS (and PHIGS+) is intended to support dynamic, 3-dimensional graphics. PHIGS is most

commonly used in environments requiring very high-performance, 3-dimensional rendering. Most

PHIGS implementations also offer 2-dimensional functionality. The major disadvantage of

PHIGS is that due to 3-dimensional and dynamic update capabilities, it is slower than GKS. Most

PRIGS systems currently available are also not compatible with X Windows.

PHIGS is a more functional system than GKS and consequently, involves more overhead even for

simple operations. For an environment which is strictly 2-dimensional, GKS will offer better per-

formance and adequate functionality. For environments with more demanding graphics require-

ments, PHIGS is a better choice. Another advantage to PHIGS is that the X Consortium is planning

a standard extension called PHIGS Extensions to X (PEX). PEX will provide full PHIGS+ func-

tionality directly in the X protocol.

Although desirable, it would be very expensive to specify both GKS and PHIGS for the Concept

Executive, as each would have to be present on all workstations. This is true even if only a few

users required one of the graphics systems, as both systems would be required on each workstation

to provide a consistent environment. A better solution is to select one of the systems for each en-

vironment to which the Concept Executive is applied.

6.2.7 Real-time Extensions

The Concept Executive shall be developed in and provide a complete set of real-time functions.

The implementation of the SVR4 operating system must provide real-time interfaces which can be

demonstrated to provide the required responses.

The real-time functions provided by the Concept Executive shall include, but not be limited to the

following:

• Priority scheduling - allows assignment of real-time priorities which insure that critical

processes execute when necessary. This is opposed to the normal UNIX scheduling al-

gorithm in which CPU-intensive processes have their priority "aged" to improve the re-

sponse of other processes.

• Asynchronous event notification - allows a process to keep track of multiple asynchro-

nous events that are performed in parallel. An asynchronous event may be generated

as a result of a timer, message arrival, or any user defined event.

• Message passing - an interproeess communications facility that allows passing and

queueing of messages. A real-time mechanism for passing only the address of data
shall be available.

• Process memory locking - allows a process to be locked into core (as opposed to virtual)

memory to prevent swapping.

Page 6-21 Workstation Executives

Custom Software Requirements Functional Requirements

• Shared memory - allows processes to share data through common memory.

• Binary semaphores - a high-performance process synchronization mechanism.

• Threads - a simple and efficient mechanism for establishing a separate flow of control.

Threads are more efficient than processes and are useful for handling asynchronous

functions.

• Timers - allow a process to set up periodic, offset, relative, and absolute timers.

• Real-time synchronous and asynchronous I/O - allows for real-time I/O for unbuffered

or buffered data.

• Real-time files - allows an application to optimize file access times by indicating the

type of file accesses at file creation time.

6.2.7.1 Recommended Standard

At the current time, there is no standard for real-time interfaces. The few UNIX operating systems

which provide real-time extensions do so in a manner which is proprietary and vendor-dependent.

This is a serious problem as real-time features are required throughout the Concept Executive and

will be required by system and application programs.

The only proposed real-time standard is POSIX 1003.4, which specifies real-time extensions. This

standard is currently in balloting, but even if the standard is accepted, it will be some time before

implementations are available. It is expected that SVR4 will provide a POSIX 1003.4 interface for

existing real-time functions. It will take longer to provide all the real-time functionality that

POSIX 1003.4 specifies.

In the interim, the Concept Executive shall utilize the real-time features of the selected operating

system and provide POSix-like interfaces which mimic the behavior of the POSIX 1003.4 func-
tions.

6.3 Custom Software Requirements

This section discusses requirements which are satisfied by custom software subsystems. These

custom subsystems will be developed using the COTS features provided by the Concept Executive.

The Concept Executive provides a relatively small set of efficient custom interfaces. These inter-

faces integrate the environment and support development of applications which must access flight-

generated data. The custom subsystems provided by the Concept Executive include the following:

• Configuration Management.

• Security.

• System State.

• Data Acquisition.

• Events.

• General-Purpose Communications.

• Distributed Processing.

• User Interface.

Each Concept Executive custom subsystem will be described in more detail in the following sec-
tions.

Page 6-22 Workstation Executives

Custom Software Requirements Functional Requirements

6.3.1 Configuration Management Subsystem

The Concept Executive shall provide a Configuration Management (CM) subsystem which will

guarantee the configuration of a workstation during operations mode. This subsystem shall pro-

vide:

• Commands to handle the submission, retrieval, upload, download, etc. of all certified

software.

• Access to certified libraries which are guaranteed to be safe for operations.

° A completely certified environment for operations mode.

• A method for downloading a list of certified files.

• Protection for the global networks during development and simulation modes.

• Restricted command access during operations mode.

• Protection of the Concept Executive during execution.

• Controlled access to the root permission.

• Method for integrating new workstations and software revisions into the network.

The CM subsystem shall verify that only certified software is downloaded to a workstation for op-

eration. To develop a certified application, the user shall interact with the CM workstation and CM

host. The following functions will be provided for this purpose:

° Submit an application job to the CM workstation for compilation and loading with cer-
tified libraries

° Return a copy of the generated executables from the CM workstation.

• Obtain status of application job submitted to CM workstation.

• List the fries for an application job which is active on the CM workstation.

• Cancel an application job active on the CM workstation.

• Upload an application from the CM workstation to the CM host.

• List the fries that are currently under configuration management on the CM host.

° Specify a f'rie or list of files to be downloaded from the CM host

° Specify a certified library to be downloaded from the CM host.

Figure 6-3 illustrates the path of an application from local user workstation, to CM workstation, to

the CM host, and back to the local user workstation.

Page 6-23 Workstation Executives

Custom Software Requirements Functional Requirements

User

Workstation

Submit

Return/Get

Status

Directory List

Cancel

CM

Work-

station

Upload
CM

Host

Download

Directory LiJt

Figure 6-3 Configuration Management Data Flow

The CM subsystem shall provide access to certified libraries which have been insured to be free of

viruses, errors, and are up-to-date. Once a source file has been tested and debugged it will be sub-

mitted to the CM workstation. The CM subsystem shall require that a makefilc be submitted with

the application source fries. The CM workstation will then be responsible for compiling the source

file with the certified libraries using this makefile. Prior to the compilation on the CM workstation,

the integrity of the source code content shall be verified by performing a limited automatic search

for unusual coding practices. Once compiled it shall be returned to the workstation for testing to

ensure that the certified libraries did not induce any problems into the execution of the application.

All applications will have to be loaded with these libraries before they can be certified. Once an

application has been certified it shall be uploaded to the CM host.

When a user has logged into a session on a workstation, the mode of operation shall be checked by

the CM subsystem. If the mode of operation has changed, the CM subsystem shall clear all oper-

ating system and executive directories prior to download and all executive and operating system

software shall be recycled for the selected mode. If the selected mode is "Operations", then all

operational directories will be cleared prior to download and only those directories will be acces-

sible during actual opcration. Once the directories have becn cleared, the user's operational soft-

ware shall be downloaded from the CM host, thereby guaranteeing that only up-to-date, ccrtified
software shall be executed.

The CM subsystem shall allow the download of user-specific applications by identifying the appli-

cations individually or in a file which lists all desired applications. During login the CM subsystem

will check for this file and use it to automate the download procedure, if it exists. Use of this down-

load list file will help to decrease the amount of time necessary to begin a session in operations
mode.

Updates to the operating system and the executive software shall be downloaded to all workstations

simultaneously during scheduled down time for system maintenance. This will insure that all

workstations at all disciplines are operating under the same system software revisions. After a re-

vision of software has been installed, a simulation exercising all certified software which is depen-

Page 6-24 Workstation Executives

Custom Software Requirements Functional Requirements

dent on the updated software (operating system or executive) must be run to insure that there are

no backward dependencies to previous revisions of software. All applications which would possi-

bly be affected by a software update should be maintained by the CM host. These applications

should be flagged for re-certification whenever a software update occurs.

If a workstation is in development mode, the CM subsystem shall not allow any writing to be done

from the workstation onto the global networks. This will prevent any unverified commands from

being exported to an actual flight. During simulation mode, the global networks will be accessible

for writing, but the CM subsystem will provide a mechanism which will prevent modification to

an actual flight which may be executing. This mechanism may be a special flight number which

is reserved for simulations, such as STS-00. During development mode, the CM subsystem shall

allow for the modification and compilation of programs. However, during operations mode, access

to text editors and compilers shall not be allowed. During simulation and operations modes, the

CM subsystem shall insure that only certified software is executed. During development mode the

CM subsystem will not restrict the window environment of the user. During simulation and oper-

ations mode, however, the user's window environment will be governed by the xterm, window

manager, and shell supported by the Concept Executive.

All files relevant to the control of a mission shall be managed by the CM subsystem. This includes

load files, control tables, and data files, as well as source files. No data files shall be allowed to be

read from a secondary device onto a workstation in operations mode.

Depending on the selected mode of operation, the CM subsystem shall provide access to the ap-

propriate versions and configuration of software and data. During operations mode these com-

mands and functions shall be restricted via tailored file systems. For example, a user in operations

will not be allowed to edit, compile, or load a source file.

Configuration management shall be provided through the use of file permissions, limited use of

the root permissions, and the aforementioned tailored file systems for different modes of opera-

tions. Access to the operating system shall be provided through the standard operating system

command line interface, but shall be restricted by specially loaded file system containing only

those commands allowed for a particular mode of operation.

There should be no way for a user to exit from the Concept Executive on a workstation unless they

have access to the root password. As a security issue, access to root shall be reserved only for sys-
tem administration users.

A new workstation shall not be connected to the network without having the current revision of the

Concept Executive loaded. This is a procedure which cannot be enforced by the CM subsystem

but is nonetheless important to the configuration management of the system.

During the support of concurrent multiple flights, if different flights require different revisions of

software, there needs to be a mechanism for executing only software certified for the concurrent

flights. This could be handled by scheduling down-time for system maintenance. At specified in-

tervals, there should be a period of time where there are no active flights. During this period of

time all operating system and executive software could be updated. This would force all concur-

rent flights to be dependent on the same revision levels of the operating system and executive sys-

tem software. The CM subsystem will need to maintain a checklist of software revision dependen-

cies and disallow the download of any software that is not certified to run with the workstation's

loaded operating system and executive software revisions.

Page 6-25 Workstation Executives

Custom Software Requirements Functional Requirements

A primary requirement of the CM subsystem for the support of continuous duration flights will be

the ability to integrate new technology into the system over the span of the flight. This will require

that the CM subsystem provide for the upload and download of new operating system, executive,

and application software to support a new technology. This process should allow for software to

be off-loaded onto other machines while the new software or new hardware is installed. The CM

subsystem will need to maintain a record of all software which is dependent on a particular revision
of hardware or software.

6.3.2 Security Subsystem

Through the use of configuration management and security, the Concept Executive should provide

a secure distributed system. The executive shall provide protection during operation through a re-

liable security subsystem. The security subsystem provided by the executive shall consist of:

• User account security.

• User account administration.

• Limited super user capability.

• Process execution security

• User privilege restrictions.

• Command issuance security.

• Proprietary data protection.

Protection of user accounts shall be provided by UNIX and later by POSIX through the use of per-

mission levels used to allow access to data by users other than the owner. A user's personal ac-

count shall be protected during operation through the use of passwords.

Password security shall be provided through scheduled validation. Whenever a new password is

entered, an expiration date will be stored. The security subsystem will provide an automated mech-

anism for flagging passwords which are about to expire.

In order to protect the operating system from access by unauthorized users, the root permission

shall be controlled during all modes. Only users with system administration authorization be al-

lowed access to the root privileges. This will prevent unintentional performance impact on a user's

activities by another user.

A tracking system will need to be implemented by the security subsystem in order to provide au-

diting of the activities of system users. The security subsystem shall also provide a means for au-

diting the activity on any system entity (program, file, etc...). All activities which are performed

with root privileges will be audited. The security subsystem shall provide the capability of turning

the auditing functions on and off. The security subsystem shall provide a method for reporting the

results of an audit.

The executive shall provide a hierarchy of system security controls ranging from individual user

permissions to system-wide capability that controls access of groups of users and contains catego-

ries of permissions (UNIX-like). This will insure that only authorized users have access to protect-

ed files.

The security subsystem shall provide protected access to critical functions and commands. The

security subsystem shall not allow potentially harmful commands to be executed during opera-

tions. All system commands which will be allowed for a particular mode of operation shall be ac-

Page 6.26 Workstation Executives

Custom Software Requirements Functional Requirements

cessible through the UNIX operating system shell. The shell itself does not present an environment

which is hazardous to the health of the workstation. It is those commands which can be accessed

from the shell which may actually cause problems with the workstation's health. A restricted shell

based on a special file system shall provide the user with the full flexibility of the regular shell with

the exception of those commands which may be used inappropriately.

This subsystem shall provide programmatic and command line interfaces. This subsystem shall

not provide an application which summarizes or allows modification of this information.

6.3.3 System State Subsystem

The Concept Executive shall provide interfaces which allow the current state of environment-spe-

cific variables to be retrieved and updated. The variables shall include all those necessary to allow

proper recognition and control of the state of the environment. The variables provided by the Con-

cept Executive shall include, but not be limited to:

• Current flight.

• List of active flights.

• Host or locally generated GMT.

• Current user and group (flight position).

• Access mode of workstation.

• Access mode of network and hosts.

• Default host for communications.

• Security status.

The System State Subsystem shall provide a set of processes which monitor the state of the system

and maintain the listed variables. Additional environment-specific data shall be provided by sep-

arate subsystems. This includes the type of data (data acquisition), list of workstations and hosts

(directory services), workstation status, etc.

This subsystem shall provide programmatic and command line interfaces. This subsystem shall

not provide an application which summarizes or allows modification of this information.

6.3.4 Data Acquisition Subsystem

The Concept Executive shall provide a Data Acquisition Subsystem. The major requirement of

this subsystem is to support a uniform set of interfaces to all network data for the application pro-

grammer. All network data shall be accessed through these interfaces. This will provide a uniform

method for retrieving all data. Network differences shall be transparent to the user.

The Concept Executive shall not allow data loss due to workstation response time. The real-time

data acquisition processes shall have the highest priority to ensure this requirement. The system

shall be designed such that the maximum burst of data will not result in loss of data at the work-
station.

The Concept Executive shall allow applications to access data in an efficient and flexible manner.

A mapping of the data shall be supplied to the application program so applications may access the

actual data space and not be provided copies of the data.

The Concept Executive shall provide a table driven map of the data to allow data format changes

without recompiling source code. This table shall be generated externally of the Concept Execu-

Page 6-27 Workstation Executives

Custom Software Requirements Functional Requirements

five. A symbolic reference shall be provided for each data element. This will allow the Concept

Executive and applications to be independent of format changes and not require recompilation for

each data format change.

The Concept Executive shall allow the storage and access of several sets of real-time data. Each

new set shall overwrite the oldest existing set of data. The number of data sets stored shall be con-

trolled by the Concept Executive. A locking mechanism shall be provided within the concept ex-

ecutive to ensure data integrity. This is to prevent a process from using data from two different

time intervals.

The Concept Executive shall support several streams of real-time data. Access to these data

streams shall be transparent to the applications programmer as much as possible. The concept ex-

ecutive shall support multiple missions. Thus, the real-time data streams may provide data for one

mission or multiple missions.

The Concept Executive shall place all applicable data in the display workstation memory. This ser-

vice is required to support different configurations. Some workstations may not have direct access

to the real-time LAN and must have a fast method of accessing real-time data. Interfaces to the

application programmer shall not be altered due to the configuration of the LAN.

6.3.5 Event Subsystem

The Concept Executive shall provide an Event Subsystem which queues all event messages gen-

erated by the workstation and received from the global network. An event is defined as a string of

ASCII text which has intrinsic meaning (as opposed to binary flight data).

The Event Subsystem shall queue and log (under control of user) all received messages. Program-

matic and command line interfaces shall be provided to perform the following functions:

• Rewieve (destructively and nondestructively) the last message from queue.

• Retrieve (destructively and nondestructively) the last message of given type.

• Retrieve (destructively and nondestructively) the last message from a given source.

• Enable or disable logging of events to a file.

• Specify the event log file or device.

• Clear the event queue.

• Generate a local event.

• Generate an event for a specific workstation or host.

Each generated event shall have an associated source identifier and type. The Event Subsystem

shall allow for unlimited definition of system types and a reasonable set of user-defined event

types.

Note that the Event Subsystem shall not provide an interactive application for reviewing generated

events. Only simple programmatic and command line interfaces are provided.

6.3.6 General-Purpose Communications Subsystem

The General-Purpose Communications Subsystem provides a consistent set of interfaces to com-

municate over the system networks. The Concept Executive shall support the following commu-

nications:

• Workstations to workstation.

Page 6-28 Workstation Executives

Custom Software Requirements Functional Requirements

• To and from a host computer.

• Displays between workstations.

The General-Purpose Communications Subsystem shall use ISO COTS packages for the above

communications. Thus, to transfer a file between workstations, the application programmer will

provide the file name and the destination. The subsystem will use X.500 services to look-up the

physical address and use FTAM services to make the connection and transfer the data. Similar ser-

vices shall be provided for host communications, including commands, and for displays between

workstations.

Interfaces shall be developed for network COTS packages to provide uniform access to all func-

tions. The following shall be supported by the General-Purpose Communications Subsystem:

° Broadcast data transfers.

. Multicast data transfers.

o Point-to-point data transfers.

6.3.7 Distributed Processing Subsystem

The Concept Executive shall provide a Distributed Processing Subsystem which provides an inte-

grated set of distributed processing functions for workstations in the network. The major require-

ments of the Distributed Processing Subsystem are as follows:

• Develop an interface which provides health and status data for the current workstation.

• Support integrated distributed processing and optimum utilization of resources by pro-

viding process distribution and load balancing.

• Support fault tolerance for critical user applications.

• Support transparent use of different workstation configurations (configuration indepen-

dence).

The Distributed Processing Subsystem will use the term "subset" to define a physical or logical col-

lection of workstations. The two types of subsets referenced are as follows:

° Static subsets - a collection of workstations will be divided into static subsets by Con-

figuration Management and/or by physical arrangement of the global networks (such as

a local Ethernet network connected via a bridge to the network backbone). A static

subset will most likely correspond to a set of workstations dedicated to support one ma-

jor application or group of users. Static subsets cannot be modified by application pro-

grammers or users.

• Dynamic subsets - within a static subset, users may define dynamic subsets which de-

fine another level of workstations groups. The purpose of dynamic subsets is to provide

users with the ability to group workstations and treat them as logical systems. This will
allow better utilization of available resources.

The Distributed Processing Subsystem shall be fully constrained and controlled by the rules estab-

lished by Configuration Management. The Distributed Processing Subsystem shall not allow local

Page 6-29 Workstation Executives

Custom Software Requirements Functional Requirements

subsets of workstations to behave independently of Configuration Management and to have free

reign of local networks.

The Distributed Processing Subsystem can only be as effective as allowed by the bandwidth of the

network. If the networks are so overloaded that it is impossible to transfer data, then this subsystem

will not be effective.

In order to distribute processing loads and provide the defined form of fault tolerance, the system

shall be able to provide an identical operating environment on each workstation in a dynamic sub-

set. This is necessary, as it is not useful to distribute a process which provides results due to a dif-

ferent configuration. This shall be accomplished via the Data Acquisition Subsystem and possibly

a remote file system.

The functions provided by the Distributed Processing Subsystem shall only be available for work-

stations in the same mode of operation.

The following sections discuss the primary goals of distributed processing support and address spe-

cific requirements for each.

6.3.7.1 Health and Status Information

The Distributed Processing Subsystem shall obtain the required local health and status data for use

in load balancing, fault tolerance, and for routing to a global health and status application. The

Distributed Processing Subsystem shall periodically obtain the required statistics and place them

in a structure which is available to all local processes. The data values to be obtained shall include,

but not be limited to the following:

• CPU percentage for:

User.

System.

Percentages will be provided for all local CPU's (multi-processor systems).

• Memory utilization including:

Used and available memory pages.

Memory pages paged in and out

Memory pages swapped in and out.

• Disk operations on all disk controllers and drives.

• System interrupts, system calls, and context switches.

• Process-specific information:

Number of active processes.

nNmber of waiting processes.

• Graphics activity (load on graphics processor if available).

Health and Status information retrieval is part of the Concept Executive as this data is required for

support of the Distributed Processing Subsystem. The collection of such information will also be

machine dependent and therefore should be isolated within the Concept Executive.

If the local health and status information is required by another workstation or host, the interested

system shall be responsible for initiating the actual network transmission.

Page 6-30 Workstation Executives

Custom Software Requirements Functional Requirements

6.3.7.2 Process Distribution and Load Balancing

The Distributed Processing Subsystem shall support distribution of processes in order to balance

the processing load of the workstations within a dynamic subset. The subset load is defined as the

aggregate of the following data values for all workstations in the subset:

• CPU percentage.

• Memory utilization.

• Disk operations.

° Graphics operations.

The load balancing function shall take these and any other relevant data values into consideration

when distributing processes. The important point is that the load of the subset is more than merely

the current utilization of CPU's. The system could have a very low CPU utilization, but still be

overloaded due to heavy use of another resources.

The Distributed Processing Subsystem shall provide an interface which allows execution of an ap-

plication on a workstation in the dynamic subset based on the current load. This interface shall
examine the load of all subset workstations and execute the application where the least load exists

(or as defined by the loading algorithm). This interface shall also allow specification of how output

data is returned (via file system or display).

The Distributed Processing Subsystem shall provide an interface which allows a workstation to

control its participation in load balancing. An interface shall be provided to insure that all appli-

cations are executed locally independent of whether or not other workstations are available for load

balancing.

The Distributed Processing Subsystem shall provide an interface which allows a workstation to

provide its resources for use in load balancing. The ultimate control of whether or not a worksta-

tion participates in load balancing remains with the individual workstation. This interface shall al-

low a workstation to be immune from requests from other workstations for resources. To provide

resources for load balancing, the workstation may specify access to all workstations in the static

subset or to selected workstations (thereby establishing a set of dynamic subsets). Workstations

already participating in load balancing shall automatically sense the changes in the subset. This

approach follows the classic server-client model.

The Distributed Processing Subsystem shall adopt a coherent mechanism and policy for treatment

of applications running on workstations which have been disabled. This mechanism may be to wait

for the application to complete or terminate the application in an orderly manner.

The Distributed Processing Subsystem shall provide an interface which allows the user to select

and control the manner in which load balancing is performed. The algorithm shall be used for all

workstations in the static subset. The attributes available for specification shall include the follow-

ing:

• Balancing algorithm.

• Weight given to CPU, disk, memory and other resources.

6.3.7.3 Application Fault Tolerance

The Distributed Processing Subsystem shall provide fault tolerance for critical applications. The

purpose is to define a critical application, sense its failure (due to software or hardware), and then

Page 6-31 Workstation Executives

Custom Software Requirements Functional Requirements

restart the application on the current or another workstation. This is a very simplistic form of fault

tolerance which is a logical extension of the functionality in process distribution. True fault toler-

ance would involve redundant operations and/or the ability to warm start (point after failure) ap-

plications. The proposed form of fault tolerance shall only provide cold restart of applications.

The Distributed Processing Subsystem shall provide an interface which allows identification and

execution of a critical application. An additional interface shall be provided to change the status

of an already running application to critical status. It shall also be possible to automatically deter-

mine that an application is critical by some data store in the executable file.

The Distributed Processing Subsystem shall retain a record of critical applications running in the

current dynamic subset. This information is distributed to allow restart of applications after failure
of an entire workstation. The Distributed Processing Subsystem shall sense the failure of a critical

application and take the appropriate action. An interface shall be provided which allows specifi-

cation of the action to take upon critical application failure. The options include the following:

• Re-start the application on a local workstation or remote workstation if necessary.

• Re-start the application on the workstation with lowest load.

In event of a failure, the Distributed Processing Subsystem shall generate and route events to all

workstations in the appropriate dynamic subset.

6.3.7.4 Configuration Independence

The Distributed Processing Subsystem shall support several configurations of workstations (con-

figuration independence). The goal of configuration independence is to identify and support addi-

tional configurations which satisfy the real-time requirements of the environment and share the

various hardware resources of the workstations. The Distributed Processing Subsystem shall sup-

port such configurations and mask the configuration-specific details from both other Concept Ex-

ecutive subsystems and application programmers.

One of the major requirements in a real-time data driven system is to expedite the delivery of data

to all application processors (workstations). One solution is to directly connect each workstation

to the global networks. This configuration solves the problem of data distribution, but requires

each workstation to be configured with a large number of resources (network boards, disks, tape,

etc.) to communicate with the network and function independently. Assuming that a workstation

has a single graphics display, this configuration must be duplicated for each processing node in the
network.

A solution provided by a few vendors is to support multiple displays off of each workstation pro-

cessor. By attaching 2 or more displays to a workstation, expensive hardware resources and inter-

faces are shared and a significant cost-per display advantage is realized without jeopardizing de-

livery of real-time data. Figure 6-4 illustrates this configuration.

Page 6-32 Workstation Executives

Custom Software Requirements Functional Requirements

Global
Network(s)

I

High.Speed
Internal Bus

I Display

[Subsystem pw

Figure 6-4 Workstation Configuration with Graphics Displays

A problem with this configuration is that it is not adequately supported by a large number of work-

station vendors. In addition, placing too many graphics displays on a workstation can saturate the

processor and peripherals. Such a configuration is also not as fault tolerant as single display work-

stations, as if the workstation processor fails, all connected graphics displays will fail as well.

The following two subsections discuss alternative configurations which shall be supported by the

Distributed Processing Subsystem.

6.3.7.4.1 X Terminals As Displays

One promising technology is that of X terminals. An X terminal is a device which provides a key-

board, color or monochrome bitmapped display, and an X server. The X terminal does not provide

any local processing capability, but rather is connected to the network and depends on a host to

execute applications (X Windows clients). The clients execute and route graphics in the X protocol

to the X terminal via the network. The X terminal interprets the X protocol and generates the ap-

propriate graphics display. As the X protocol is standard, any X terminal meeting performance re-

quirements (color, display size, etc.) may be used for graphics generation.

A workstation configuration utilizing X terminals as graphics displays is presented in Figure 6-5.

Page 6-33 Workstation Executives

Custom Software Requirements Functional Requirements

Global

[. Network(s) I

Figure 6-5 Workstation Configuration with X Terminals

Although a relatively new technology, there are a number of high-performance X terminals cur-

rently available. These devices provide custom hardware which allow excellent graphics perfor-

mance. Use of X terminals off-loads much of the graphics processing which is normally performed

by the workstation processor. Another advantage is that there are a number of vendors marketing

these devices. This competition will keep the cost of X terminals low and insure rapid introduction

of new technology. The primary disadvantage of X terminals is that they are limited by the speed

of the local area network.

From a software perspective, a configuration using X terminals is very similar to one using local

graphics displays, as all processing still resides on the workstation processor. The Distributed Pro-

cessing Subsystem could easily support the two configurations.

The Distributed Processing Subsystem will not be able to specify the network protocols used to

communicate with the X terminals. Therefore to support X terminals, the Distributed Processing

Subsystem may have to use another protocol on the local network serving the X terminals. While

this is undesirable, it does not introduce a configuration management problem. In the future, X

terminals will allow communication via several protocols and should no longer have this problem.

6.3.7.4.2 Separate Processors as Displays

A totally different configuration is one in which several actual workstations with separate proces-

sors are used as displays. In this configuration, a server workstation is attached to the global net-

works. The server in turn provides data and or disk services to the actual display workstations.

Figure 6-6 illustrates this configuration.

Page 6-34 Workstation Executives

Custom Software Requirements Functional Requirements

Global

Network(s)

Local

Figure 6-6 Server/Client Workstation Configuration #1

In this configuration, the server workstation will provide all data and some disk services to the dis-

play workstations. The small local disks are optional, but recommended to provide local swap and
other services to reduce local area network waffic. This configuration may use one or two local

area networks to allow adequate bandwidth for disk and data support. This may be necessary as a

large amount of data will pass through the server and on to the local network.

A similar configuration is one in which the display workstations are directly connected to the glo-

bal networks in order to retrieve real-time data. Other data and disk services are provided via the

server workstation. Figure 6-7 illustrates this configuration.

Global

I Network(s) [

Local

Area Network(s)

W(

• Workstation p _ Works1

Figure 6-7 Server/Client Workstation Configuration #2

There are a number of distinct advantages to this type of configuration. This includes the follow-

ing:

Page 6-35 Workstation Executives

Custom Software Requirements Functional Requirements

• Use of workstations in this manner is widely supported by vendors. The workstations

used for server and display functions are interoperable.

• Use of individual workstations provides more total processing capability.

• Individual workstations are often less expensive (and always more flexible) than dedi-

cated graphics displays.

• Workstations can share use of the server disk. This will also reduce the number of cop-

ies of software for which the configuration must be managed.

There are also a number of disadvantages, including distribution of data, real-time performance,

and software complexity. These disadvantages are offset by the advantages of supporting this type

of configuration.

6.3.8 User Interface Subsystem

The Concept Executive shall provide a User Interface Subsystem which presents an environment

which is consistent across all operating modes (subject to configuration management and security).

This means that regardless of which mode of operation a workstation is executing under, the inter-

face to the Concept Executive and the operating system shall remain essentially the same. The only

difference shall be in the restrictions placed on the commands which are allowed to be executed

during different modes.

The User Interface Subsystem shall provide the following three COTS and custom-based func-

tions:

• Provide a login application which allows controlled entry to the Concept Executive sys-

tem.

• Establish a graphic user interface-based interactive environment with a consistent look
and feel.

• Provide a real-time mechanism for efficient and deterministic display of text.

Each of these functions will be described in more detail in the following three subsections.

6.3.8.1 Login Client

The Configuration Management Subsystem of the Concept Executive requires a new level of con-

trol for user access to the system. The existing login and initialization process of UNIX is not suf-

ficient to achieve the required level of control. The User Interface Subsystem shall support con-

figuration management by presenting a new login client which completely replaces the existing

UNIX process. This client shall present an easy-to-use interface and shall allow the following:

• Entry of information which identifies the user (username, password, group). Note that

the password shall not echo when entered.

• Present environment-specific information and allow user to select values which affect

initialization of the session (flight, host, network, etc.).

• Specify the access mode (development, simulation, operations) and default values to

use (CM workstation, CM host).

• Specification of files which allow special environment initialization.

Page 6-36 Workstation Executives

Custom Software Requirements Functional Requirements

When the user attempts a login, all entered information shall be verified. If attempting entry to

operations mode, the username and password shall be verified by configuration management. If

access is allowed, the environment shall be initialized as required by configuration management

and as specified by any available user initialization files.

The login client shall be active on every graphics display on each workstation controlled by the

Concept Executive. The login client shall be reactivated after a user session is terminated.

The login client is the only custom graphic user interface application provided by the User Inter-

face Subsystem. This client is required to replace the existing UNIX process and to provide a log-

ical manner in which the COTS-based interactive graphic user interface is initiated. The login cli-

ent shall provide an interface which conforms to the look and feel specification provided by Motif.

The login client shall therefore act as a guide for development of other graphic user interface ap-

plications. The only window-based client provided by the Concept Executive shall be the login

client. This client shall provide the standard look and feel of the system. Once a user has logged

into a workstation session, the Concept Executive shall place the user into a COTS window envi-

ronment. This environment shall include xterm, the selected window manager, and access to the

selected shell.

6.3.8.2 User Environment

The Concept Executive shall provide a simple interactive environment from which all types of us-

ers can effectively interact. This environment depends on a collection of COTS clients as de-

scribed in the "Graphic User Interface" section. This environment shall allow execution of com-

mands via the native command line interpreter (the UNIX shell). Interaction with the shell is the

primary means of executing commands in this environment.

Through the selection of the Motif widgets, the User Interface Language, and the associated look

and feel, the Concept Executive shall mandate a consistent graphic user interface behavior. The

Concept Executive shall provide a standard set of interaction constructs to applications program-

mers. This set of constructs will then help to maintain the consistent look and feel throughout all

applications developed in the system. The types of interaction constructs which are standardized

by this look and feel shall include, but not be limited to the following:

• Colors.

• Fonts.

• Function keys.

• Mouse inputs.

• Cursor image.

• Keyboard manipulation of the graphic cursor.

• Use of menus, scrollbars, and other user interface objects.

The Concept Executive shall rely on a COTS window manager Cmwrn" as previously described).

Only one window manager shall be supported in order to maintain a consistent look and feel. This

is necessary, as in addition to presentation of a different interactive interface, different window

managers require development of separate code to properly interact with each window manager.

Page 6-37 Workstation Executives

Custom Software Requirements Functional Requirements

6.3.8.3 Real.time Display Mechanism

The User Interface Subsystem shall provide a programmatic interface which allows real-time dis-

play of large quantities of text values. This interface shall allow limited use of colors, fonts, and

other simple attributes. The purpose of this interface is to provide a standard mechanism for dis-

playing data in an efficient, deterministic manner. The purpose is not to provide a general purpose

mechanism which supports a wide variety of text attributes and other graphics.

A requirement of the Concept Executive is to allow real-time acquisition and display of telemetry

data. This is a problem in an X Windows environment for the following reasons:

• X Windows is asynchronous - the server queues graphics requests and flushes internal

buffers in a non-deterministic manner.

• X Windows does not provide a simple and efficient manner of displaying large quanti-
fies of text values. Users must either use cumbersome low-level calls or use a widget

which is not well suited to the requirement.

The User Interface Subsystem shall utilize the real-time features of the operating system, the low-

est level X Windows interface, and if necessary any proprietary X extensions to provide an elegant

mechanism for presenting large quantities of text values. This interface shall provide the following

functions:

• Allows specification of individual or a buffer of values to be used for update.

• Only updates values which have changed.

• Allows specification of display action taken for portions of the window not exposed

(obscured or iconified - this is important, as some X servers do a poor job of handling

this case).

• Allows specification of colors and fonts to be used as defaults and for limit conditions.

Page 6-38 Workstation Executives

Technology Survey Introduction

7.0 Technology Survey Introduction

The research direction of the f'trst phase of NASA Grant NAG 9-340 is to survey government and

commercial sites for systems and technology applicable to workstation executives. A workstation

executive is a software system which integrates a network of workstations and provides a standard-

ized set of services to application programmers. This document defines a "Concept Executive"

which integrates the native operating system, additional Commercial-Off The-Shelf (COTS) stan-

dard interfaces, and custom subsystems in order to provide the functionality required by a real-time

spacecraft telemetry processing command and control environment. For more information on the

Concept Executive, refer to chapters 1 through 6.

The Technology survey was conducted to identify software technology useful in the Concept Ex-

ecutive. The two major types of software surveyed include the following:

• Identify operational (or planned) executives from which technology and design ap-

proaches may be identified and used in the Concept Executive described by this docu-

ment.

• Identify related software systems which axe applicable to the Concept Executive. This

effort consisted of the review of two user interface management systems.

• Identify and describe in detail, new standards which are applicable to the Concept Ex-

ecutive.

The scope of this survey effort covers software which relates to the Concept Executive. The tech-

nology survey does not include reviews of hardware components or miscellaneous COTS software
which is not a standard.

For each system or standard reviewed, the following information will be provided (the level of de-

tail and content will vary based on the type and complexity of the system):

• Introduction - (all) a brief description of the history and purpose of the system.

• Contact point - (all) a listing of the organization or individual from which the system or

information may be obtained.

• Review process - (executive and user interface systems) a brief description of the pro-

cess used to review the system. This will consist of reviewing documentation and/or

experimenting with code. A list of all reviewed documents is provided for the conve-
nience of the reader.

• System Requirements - (executive systems) if available, the high-level requirements for

the system will be presented. Requirements are presented in detail, as the final result

of this grant will be expressed in terms of requirements.

• Description - (all) a more detailed description of the system or standard.

• Applicability to the Concept Executive - (executive and user interface systems) an

overview of what technology is useful and how it may be applied to the Concept Exec-

utive.

Note that documents referenced in the "Review Process" sections will not be repeated in the doc-

ument Bibliography.

Page 7-1 Workstation Executives

TPOCC System Executive Systems

8.0 Executive Systems

This chapter summarizes several actual operational or planned systems used at various NASA in-

stallations. The systems reviewed (and the installation where used) include the following:

• Transportable Payload Operations Control Center (TPOCC) - Goddard Space Flight
Center.

• Generic Checkout System (GCS) - Kennedy Space Center.

• Multi-satellite Support Operations Control Center (MSOCC) Application Executive

(MAE) - Goddard Space Flight Center.

• Peripheral Processor System (PPS) - Marshall Space Flight Center.

• Image Reduction and Analysis Facility (IRAF) - National Optical Astronomy Observa-

tories.

• Trajectory Operations Application Support Task (TOAST) - Johnson Space Center.

• Space Flight Operations Center (SFOC) - Jet Propulsion Laboratory.

Each system was obtained by contacting the appropriate individual(s) at the different NASA cen-

ters. The review processes consisted of on-site demonstrations, documentation reviews, and ex-

perimentation with actual code. The following sections describe each system in more detail.

8.1 TPOCC System

The Transportable Payload Operations Control Center is a system undergoing development at

Goddard Space Flight Center. In SwRI's understanding, Goddard is responsible for the majority

of unmanned orbiting satellite projects. Each satellite has its own requirements and will contain a

unique collection of instruments. Although many satellites are similar (such as Multi-Mission sat-

ellites), there remains a wide range of unique ground support requirements which must be met for

each.

The purpose of the TPOCC system is to provide a standard hardware and software concept which

may be easily configured to the requirements of each satellite. It is intended to replace the existing

system which must be reconfigured for each supported satellite. This system includes specialized

hardware and software for each such satellite. This is wasteful as a large amount of development

is required for each satellite. Specific maintenance costs and expertise are also required for each

such system.

For each new satellite, existing standard TPOCC software will be configured and then transported

to the new system. The TPOCC system provides the generic functions and provides mechanisms

whereby satellite-specific requirements are implemented. In this way, development costs are min-

imized and the time required to ramp up for a satellite project is greatly reduced. The TPOCC con-

cept defines a generic and flexible system which can be reduced or expanded to suit the require-

ments of a given satellite (or any spacecraft).

As of the date of this review, the TPOCC was in the form of a prototype called the Prototype Trans-

portable Payload Operations Control Center (PTPOCC). The purpose of the PTPOCC is to dem-

onstrate the feasibility of controlling NASA satellites with a system based on the TPOCC concept.

The PTPOCC will be used to support the Solar Maximum Mission (SMM) satellite. This project

(called the SMMOCC) was selected for the following reasons:

Page 8-1 Workstation Executives

TPOCC System Executive Systems

• The feasibility of the TPOCC concept must be verified before used on a new operation-

al system.

• The SMM is a standard Multi-Mission Satellite (MMS). This will allow the software

to be easily used on other satellites of this type.

• The SMMOCC is nearing the end of its life cycle and will need to be replaced if SMM

is refurbished.

The PTPOCC system will be used in conjunction with the existing SMMOCC system to demon-

strate the feasibility of the TPOCC concept. This is of course similar to the role of the Transition

Flight Control Room (TFCR) at NASA-JSC. In addition to its basic functionality, the PTPOCC

will include SMMOCC-specific functions to support the unique requirements of the SMM satellite.

For the remainder of this document, the term "TPOCC" will be used to describe the basic system

concept. The term "PTPOCC" will be used to describe the prototype implementation.

8.1.1 Contact Point

Code 511

Goddard Space Flight Center

8.1.2 Review Process

The review process for the TPOCC system involved examination of the following two documents:

• Prototype Transportable Payload Operations Control Center (PTPOCC) System Design

Review (SDR) Book 1 of 2.

• Prototype Transportable Payload Operations Control Center (PTPOCC) Preliminary

Design Document.

The documents reviewed provided a good overview of the TPOCC system and a detailed discus-

sion of the software design. The documentation was well-suited for this review.

8.1.3 TPOCC Requirements

The basic TPOCC system, as it applies to any application of its concept is summarized in the fol-

lowing primary requirements:

• The TPOCC must be portable, expandable, configurable software plus a host computer

system for the operation of spacecraft and/or instrument payloads. TPOCC will be por-

table in the sense that the hardware and software will be usable for a variety of satellite

projects.

The hardware used for the _C will be compact and must not require special housing or envi-
ronments.

- TPOCC will be expandable in that the software, processors, networks will be integrated as needed
for a particular satellite application. The minimum TPOCC system will be a single computer; the
maximum will be a networked set of computers.

° The TPOCC system will include three levels of software libraries. These include the

following:

- Kernel Library - contains routines which perform generic system and application-independent
functions.

System Specific Library - contains routines which provide a standard interface to a variety of host

computer systems.

Page 8-2 Workstation Executives

TPOCC System Executive Systems

User Extensions Library - contains routines implementing functions specific to a particular satel-

lite project.

• The TPOCC will provide a system generation facility to allow subsets to be generated.

• The TPOCC software will perform functions common to a wide range of spacecraft and

instrument applications. This includes operator command, display, telemetry process-

ing, high-rate dump collection, and real-time command processing.

• All TPOCC software shall be written in Ada to allow porting to any system supplying

a DOD certified compiler. It must be modular and allow user extensions to be easily

added.

• All TPOCC software shall be designed to take advantage of modern host computer and

software capabilities. Support for networked workstations, commercial databases, and

operator interaction through different devices are required.

• The TPOCC will use commercially available hardware and software to minimize costs.

Such products will be selected based on performance and the requirements of a partic-

ular satellite.

For the PTPOCC system, the primary requirements are expanded to address the subset of functions

provided in the prototype system. These requirements are further divided into functional and con-

straining requirements. The following sections summarize these two types of requirements.

8.1.3.1 PTPOCC Functional Requirements

PTPOCC functional requirements describe the actual functions which must be provided. These re-

quirements represent the subset of TPOCC functional requirements which will be implemented in

the PTPOCC. It does not include the project-specific functions added to support the SMMOCC.

Each of the following sections describe in detail one area of the functional requirements.

8.1.3.1.1 Generic Functions

Generic functions include those which affect the entire system, including processing of operator

commands, display processing, and handling of system events. The generic functional require-

ments are summarized below:

° Operator command processing - a TPOCC Operations Language (TOL) shall be pro-

vided as a means of initiating functions:

All real-time functions shall be controllable via TOL statements.

TOL statements shall be read from keyboard, procedure, or via screen objects (such as menus).

PTPOCC shall parse and execute TOL statements.

It shall be possible to issue TOL statements on one processor in order to control functions on an-
other processor.

• Operator display processing - display functionality will be provided to allow users to

review data and control the system:

All real-time functions shall be monitored via operator displays.

Displays shall be generated in windows which are network-transparent.

Support for overlapped and tiled windows shall be provided.

Text and graphic display of data shall be supported.

Text shall be static or dynamic with color support.

Page 8-3 Workstation Executives

TPOCC System Executive Systems

Engineering conversion shall take place for display purposes.

PTPOCC shall be able to generate state name displays of discrete telemetry points.

Graphic displays shall consist of dynamic 2-D color plots (strip-charts and x-y plots).

Cascading (hierarchal) menus shall be supported.

Display definitions may be defined, saved, and used.

Display snapshots may be generated for hard-copy output.

• Event processing - PTPOCC will be capable of processing different types of events:

Each PTPOCC function shall detect events and generate event messages.

Each event message shall be logged by the detecting processor.

Each event message shall have an associated event number and class.

Each event message shall be distributed to each display which has indicated interest in the event's
number and/or class.

Events occurring at a high rate of speed will not interfere with _C real-time processing.

8.1.3.1.2 Real-time Functions

PTPOCC shall support real-time control and monitoring functions. Specifically this includes real-

time telemetry and command processing, performance monitoring, and test data generation. These

requirements are summarized below:

• Real-time telemetry processing:

FI'Pt_C shall read the MMS format real-time telemetry and associated communications data.

All real-time telemetry and associated communications data shall be Greenwich Mean Time
(GMT)-tagged and saved on disk.

PTPOCC shall provide playback for telemetry and communications data at a specified rate. It will
not be necessary to perform playback and real-time concurrently.

Monitor frames of telemetry shall be decommutated. The most recendy received value for each
telemetry point shall be stored in a table and made available.

Selected telemetry points shall be streamed out for graphic displays.

Trend-checking shall take place as decommutation is performed.

Limits checking shall be performed during decommutation.

Spacecraft configuration checking shall be performed on major frames.

Limits checking may be turned on/off for each telemetry point.

PTPOCC shall execute user-defined functions on receipt of a major frame of telemetry, receipt of

a minor frame of telemetry, or when a specified point is updated.

Real-time telemetry processing shall be data-base driven.

• Real-time command generation:

_C shall generate MMS-format real-time commands in response to TOL statements.

PTPOCC shall compute and append the error detection code for each real-time command and pro-
duce real-time command frames.

- Command block output shall be metered to the selected MMS commanding rate.

TOL real-time command generation control statements shall only be processed from one worksta-
tion at a time.

All transmitted real-time commands shall be GMT-tagged and stored in the command history fde
on disk.

Page 8-4 Workstation Executives

TPOCC System Executive Systems

Real-time command generation shall be data-base driven.

Real-time command verification:

The spacecraft command counters shall be monitored for expected values.

For each real-time command issued, a list of telemetry points shall be monitored for the expected
raw values until the points and values match or the verification times out.

Performance Monitoring - The PTPOCC will be capable of periodically computing and

presenting system performance measurements. The statistics monitored include:

CPU utilization.

Ethernet and disk traffic.

Memory utilization.

- Context switching.

- Process state.

- Process priority.

- Real and virtual process size.

- Process CPU utilization.

Test Data Generation - PTPOCC will generate data to be used for software testing pur-

poses:

- P'I9(_C shall generate minor frames of text telemetry from a canned major frame.

- PTPOCC shall generate associated communications data.

- PTP(X_C shall modify telemetry in response to real-time spacecraft commands.

- P'IPC_C shall modify telemetry in response to TOL commands.

8.1.3.1.3 Off-line Functions

PTPOCC shall be able to generate fiat files from the PTPOCC database for real-time support and

for report generation. The specific requirements are listed below:

• Flat file build:

- PTPOCC shall generate flat Ides from the P'IT'(_C database.

- PTPOCC shall generate fiat files from display definitions and the PTPOCC database for use dur-
ing real-time.

• Reports:

- P'rP(_C shall be able to generate reports on the database contents.

- Reports shall be generated to show portions of the telemetry history file.

Reports shall be generated showing selected portions of the command history file.

Reports shall be generate showing portions of the event history l-de.

Page 8-5 Workstation Executives

TPOCC System Executive Systems

8.1.3.2 Constraining Requirements

Constraining requirements include those which dictate directions of the PTPOCC design and im-

plementation. These requirements axe of interest again due to their applicability to the Concept Ex-
ecutive. The constraining requirements are summarized in the following sections.

8.1.3.2.1 System Constraints

The PTPOCC system shall meet requirements of the host hardware and software as described be-

low:

• Host Computer Hardware:

PTPOCC shall be implemented so that it can run on one processor, multiple processors commu-
nicating over a system back-plane, or over multiple processors connected by Ethernet,.

• Host Computer Software:

Operating System - a widely available system such as UNIX.

- Language - C and/or Ada.

- Dam Base - commercially available relational DBMS.

- Communications/Networking - TCP/IP.

• Graphics:

- Support for windows, icons, menus (the basic desktop model).

- A network window system is required to generate windows which may be distributed over the net-

work (client/server).

Off-the-shelf plotting package for graphics and text display.

8.1.3.2.2 Interface Constraints

The PTPOCC system shall support all existing communication and user interfaces as described be-
low:

• NASA Communications (NASCOM) communications interface.

• User interface - The PTPOCC shall use modem workstations supporting the following:

High-resolution color displays supporting windowed text and graphics.

Color printers for full screen output.

Laser printers for monochrome screen output and listings.

Input via keyboard and pointing device (mouse).

• GMT interface.

8.1.3.2.3 Performance constraints

The PTPOCC must be able to sustain processing of up to 64Kbps of telemetry without data loss.

Page 8-6 Workstation Executives

TPOCC System Executive Systems

8.1.3.2.4 Life Cycle Constraints

PTPOCC shall have the design qualities and meet the development, maintenance, and enhance-

ment constraints presented below:

• Maintainability - COTS components (hardware and software) shall be used where pos-

sible to minimize development costs.

• Enhancability:

_C software shall be dam-base driven.

User hooks will be provided for specific processing of real-time telemetry.

• Portability - PTPOCC shall be developed in C and/or Ada and developed in a standard

operating system such as UNIX.

• Modularity/Portability - PTPOCC shall consist of three levels of libraries:

Kernel - contains portable functions implementing the standard TPOCC functions.

System-Specific functions - contains functions which interface the kernel library to the host com-

puter environment

- User extensions - contains spacecraft-specific functions.

8.1.4 System Description

The TPOCC system will be a flexible and portable system which will provide the foundation for

support of a wide variety of satellite (or more generically "spacecraft") projects. The TPOCC con-

cept is based on a completely open architecture which depends on a number of industry standards.

This is necessary to achieve the flexibility, portability, and modularity requirements. The TPOCC

concept depends heavily on standard network hardware and software for distributed processing. It

is this distribution which allows the system to be reduced or expanded based on satellite require-

ments. Processing capability is increased by adding additional processing nodes to the standard

network.

In addition to network standards, the TPOCC system is based on graphic and operating system

standards. While the concept describes a level of library in which system dependencies are imple-

mented, it is intended that this library primarily consist of standard functions. This greatly reduces

the amount of system-specific software which must be developed.

The TPOCC system achieves many of its goals by designing software subsystems which can op-

erate together on the same processor or across a network of homogenous or heterogeneous proces-

sors. In this way, subsystems may reside on processors best suited to their requirements. For ex-

ample, real-time telemetry acquisition resides on a real-time processor (which does not require

high-resolution graphics). Operator interface subsystems reside on a graphics workstation (which

does not require a real-time operating system). This application of distributed processing allows a

wide variety of cost and performance effective hardware configurations.

In addition to working in a network of processors, the TPOCC concept will function on a single

processor system. This will require a system with both real-time abilities, workstation graphics,

and all required support software. While there are systems which meet all requirements, they are

not cost effective compared to a distributed system. This of course may change in the future as

more UNIX systems provide real-time capabilities.

The remainder of this section discusses the TPOCC system in more detail. This discussion is di-

vided into the following three subsections:

Page 8-7 Workstation Executives

TPOCC System Executive Systems

• Commercial Technology Review - a summarization of hardware and software technol-

ogy reviewed for use in the PTPOCC.

• Software System Design - a summary of the PTPOCC software subsystem design.

• Implementation Plans - a summary of the current state of the PTPOCC and future plans

for prototype evaluation.

8.1.4.1 PTPOCC Commercial Technology Survey

In order to find hardware and software which would meet the constraining requirements of the PT-

POCC, a survey of commercial technology was performed. This survey was similar to the stan-

dards evaluation performed by SwRI, but also included a close look at various types of hardware

and some non-standard software systems. Although beyond the scope of this document to examine

this survey in detail, it is useful to mention some of the different technologies which were recom-

mended by this evaluation. The evaluation reviewed technology in the following two areas:

• Standard networks.

• Network nodes (workstations).

Each of the two areas includes an evaluation of hardware and software. The technologies recom-

mended are presented in the following subsections.

8.1.4.1.1 Standard Networks

The central concept in the PTPOCC system is to build the system around a standard network. This

allows processors to be added as needed to meet the processing requirements of the system. Using

a standard network and communications, software can easily communicate with systems on sepa-

rate processors.

The standard network functions selected for the PTPOCC system include the following hardware

and software:

• Ethernet hardware and protocols.

• Transmission Control Protocol (TCP) and Internet Protocol (IP).

• Universal Datagram Protocols (UDP).

• Remote Procedure Calls (RPC) and EXternal Data Representation (XDR).

• Network File System (NFS).

This set of standards is the basic layer structure present on many popular UNIX systems. In addi-

tion to standard networks, the evaluation also reviewed the following network-transparent window

systems:

• X Windows.

• Network Extensible Window System (NEWS).

The X Windows system was selected for the PTPOCC system. Note that due to the lack of com-

mercially supported X Windows systems, other proprietary systems were used as interim solutions.

8.1.4.1.2 Network Nodes (Processors)

Two basic types of network nodes were evaluated. These include workstations and real-time pro-

cessing nodes. Note that there is an overlap area as some workstations have real-time capability.

A number of popular workstations were evaluated, including:

Page 8-8 Workstation Executives

TPOCC System Executive Systems

• Sun 3 and 4 systems.

• IBM RT system.

• Hewlett Packard 300 system.

• MASSCOMP 6600 system.

In general, each system supported the required network software. Only the IBM and HP supported

X Windows and only the HP and MASSCOMP supported real-time functionality. The findings

indicate that an HP or MASSCOMP could likely be used if all software were to be placed in one

processor. Due to the relative price of these systems, it was judged that this approach was not cost-
effective. The Sun and the RT were judged to be good for operator display stations, with the IBM

RT considered preferable due to availability of X Windows and better user response during graph-

ics output.

It is important to note that the evaluation was performed in early 1988. It is also somewhat small

in scope considering the large number of available workstations. Such evaluations need to be up-

dated at least on a yearly basis to insure that information is up to date.

The evaluation also looked at dedicated real-time systems. Such systems would be used as front-

ends to acquire the real-time telemetry data. This data could then be distributed to the processing

nodes via Ethernet. For a relatively small environment such as the PTPOCC, this approach is pref-

erable as it allows non-real-time processing nodes to be added as needed. Using a dedicated real-

time system is also preferable to buying a real-time UNIX system as a premium is paid for its

unique capabilities.

Two separate dedicated real-time processing systems were examined. The systems include the fol-

lowing:

• VAXELN.

• VxWorks.

VAXELN is software which runs on a DEC VAX system. Its major shortcoming is that it com-

municates via DECNET protocol rather than TCP/IP. VxWorks runs on a variety of 680x0 VME

systems, including Sun's. In general, VxWorks was considered preferable due to is speed (relative

to processor), use of standards, and foundation in UNIX. Another advantage is that there are a

large number of inexpensive 680x0 VME-based systems. This makes it possible to select hardware

which is ideally suited to the processing requirements of the system.

8.1.4.2 PTPOCC System Design

The central concept behind the PTPOCC system is a modular design which is flexible, portable,

and expandable. The concept assumes one to many separate processors connected on a standard

network. The system design places no constraints on the types of hardware or operating system

software, as long as a standard means is provided for inter-network communications.

The PTPOCC system is divided up into 8 software subsystems. These subsystems can all reside

on one processor or can be divided up and placed on different processors. All subsystems commu-
nicate with one another via standard TCP/IP-based sockets. This communications scheme allows

transparent access on a single processor or over an Ethernet. The major advantage to this design

is that processors can be added as requirements dictate. Subsystems can also be placed on hard-

ware which best suits the subsystem requirements. For example, real-time data acquisition sub-

systems on real-time processors and operator interface subsystems on workstations.

Page 8-9 Workstation Executives

TPOCC System • Executive Systems

The PTPOCC system is to be implemented using industry standards as described in the previous

section. This is of critical importance to the software as it is necessary for software subsystems to

communicate with one another. Use of standards is also necessary to insure that different work-

stations and other hardware can be interchanged as necessary.

The PTPOCC system will be implemented in the C language to insure portability. Although use

of Ada is a specific requirement, it is not yet well integrated into any of the workstation environ-

ments and would be difficult to use.

8.1.4.2.1 PTPOCC Software Subsystems

The PTPOCC software system is partitioned into 8 software subsystems, each of which provides a

well-defined subset of functionality. The 8 subsystems are as follows:

• Operator Command.

• Operator Display.

• Events.

• GMT.

• Spacecraft Communications.

• Spacecraft Telemetry and Command.

• Spacecraft Communications Simulation.

• Spacecraft Telemetry and Command Simulation.

The following 8 subsections provide brief descriptions of each software subsystem. Each sub-

system will be discussed in terms of the processes which it defines.

8.1.4.2.2 Operator Command Subsystem

The Operator Command Subsystem is responsible for reading operator commands from normal in-

put devices and procedure files, parsing the commands, and if necessary, distributing the com-

mands to the appropriate processor for execution. The basic design allows control of both local

and remote functions. This is necessary as real-time functions may (and most likely will) be

present on a remote processor. This subsystem consists of the following processes:

• Main parser - this process is the central point for entry of commands. The main parser

reads the command, parses it, and if legal, sends it to the appropriate process for exe-
cution.

• Procedure parser - this process is used to execute commands from a procedure file (as

opposed to operator input).

• Router/Server - this process aids the communication of commands to remote proces-

sors. This process initiates a communications link to the remote processor.

• Router - this process maintains a single connection to a remote node. Locally, it sends

the command to the remote node; the remote router receives the command and passes

it to the remote main parser.

8.1.4.2.3 Operator Display Subsystem

The Operator Display Subsystem is responsible for retrieving data, formatting the data into textual

and graphical formats based on a display definition, and then presenting this display to the user.

Page 8-10 Workstation Executives

TPOCC System Executive Systems

The display generated is network transparent, meaning that the generation may occur on one pro-

cessor, while the presentation and interaction occurs on another. This is the major motivation for

selection of a network-transparent window system such as X. The processes which make up this

subsystem include:

• X server - this process renders the display. It may be on the same processor or on a

remote processor in the network (note that this is the COTS X server).

• Display - this process builds the display based on the display definition. It receives data

(possibly from a number of sources) and updates the display as necessary.

• Stream - this process consists of any application which waits for a display data request.

Upon receipt of a request, synchronous data is sent out for display purposes.

• Periodic data server - this process is similar to a stream, but generates asynchronous,

periodic data at a frequency determined by the requesting process.

• Data Sampler - fork of the periodic data server.

A major part of the Operator Display Subsystem is the user interface which it presents. This is a

completely application-defined (new) user interface which provides the following capabilities:

• Operation via mouse and menus.

• Alternative operation via keyboard and the command line.

• Flexible display layout.

• Graphics and color.

• Protected access to critical functions.

The PTPOCC user interface provides a completely new environment to the operator. It supports

an interface which can be driven either by the mouse or the keyboard. Keyboard input is via TOL

statements entered in a command line. There does not appear to be any escape to the native oper-

ating system or its command interpreter (UNIX shell). The interface alleviates this need by pro-

viding all functions necessary for the operator to use the system.

The PTPOCC user interface maintains a strictly defined display format. The display consists of

several consistently placed areas for operator control, data display, and message display. A sample

display appears in Figure 8-1 (the four functional areas are divided by bolder lines).

k

Page 8-11 Workstation Executives

TPOCC System Executive Systems

M_a
lgmu

Command I.At_ ;;
i

eas*: t _aor_: I r*tm_:

Figure 8-1 Sample PTPOCC Display

The PTPOCC user interface consists of four functional areas. From the top of the screen to the

bottom, these include:

• Command line - allows entry of TOL command statements. System may be operated

entirely from within this interface. This area consists of:

Input line - used for command entry. Ifa command is invalid, it is re-displayed for editing; if cor-
rect this line will be cleared.

Response line - a message will conf'u'm command execution or will identify invalid part of com-
mand. Color will be used to include success or failure.

• Header area - area in which system information and main menu/icon structures appear:

Main menu - lists functions which affect the display as a whole including screens, options, telem-

etry, command, housekeeping, and terminate.

Icons - tile, window, or tool. When the operator moves one to the display area, it will expand to

present the appropriate function.

• Display area - large area of the screen in which the following types of data displays may

be placed:

Tiles - non-overlapping areas used to monitor telemetry data. Formats include alpha-numeric,

strip-chart, meter, and x-y plot. Tiles include local menus for generic and tile-specific functions.

Windows - overlapping temporary areas used for information or prompts. As with tiles, windows
include local menus.

• Events area - set of scrolling lines which present global system and local event messag-

es.

Page 8-12 Workstation Executives

TPOCC System Executive Systems

Although the PTPOCC display format is fairly rigid, there remains adequate flexibility in the area

used for data display. There are a number of functions which allow the operator to place and size

the different tiles used for data display.

8.1.4.2.4 Event Subsystem

The Event Subsystem consists of a single process which is responsible for logging events and rout-

ing them to interested nodes. A remote node can set up a connection and specify a f'flter which

allows event routing based on number and type. In such a case, the local events system will route

applicable events to the interested node(s).

8.1.4.2.5 GMT Subsystem

The GMT subsystem consists of a single process which provides the time for local processes. It

obtains the time from a local time code generator, a local system clock, or via a connection to a

remote process.

8.1.4.2.6 Spacecraft Communications Subsystem

The Spacecraft Communications Subsystem is responsible for communicating with a NASCOM

interface. It receives, records, and distributes telemetry frames. It also blocks, records, and sends

command frames. This subsystem consists of three processes:

• Spacecraft Telemetry Communications Server - this process handles input of telemetry

data. It reads telemetry data, stores it in a history file, and distributes it for real-time

processing.

• Spacecraft Command Communications Server - this process handles output of com-

mands. It buffers the commands and records them to a history file.

• NASCOM Channel Control - this process performs all NASCOM interface configura-

tion and status monitoring functions.

8.1.4.2.7 Spacecraft Telemetry and Command Subsystem

The Spacecraft Telemetry and Command Subsystem performs telemetry dccommutation, status

checking, and command verification functions on telemetry frames. This subsystem also builds

and outputs command frames. This subsystem consists of two processes:

• Spacecraft Telemetry Decommutation - telemetry decommutation is driven by a struc-

ture in a data base. This data base contains information which allows the telemetry data

to be correctly decommutated. During this time, limits are checked and trend analysis

is performed.

• Spacecraft Command Generation - this process constructs command frames, imple-
ments command retries, and initializes data for command verification.

8.1.4.2.8 Spacecraft Communications Simulation Subsystem

The Spacecraft Communications Simulation Subsystem performs the inverse function of the

Spacecraft Communications Subsystem. This subsystem takes input from remote telemetry pro-

cesses (normally the Spacecraft Telemetry and Command Simulation Subsystem) or from the te-

lemetry history file and routes to the NASCOM interface. It also takes command input from the

NASCOM interface and routes it to a history file or a remote command handling process (normally

the Spacecraft Telemetry and Command Simulation Subsystem).

Page 8-13 Workstation Executives

TPOCC System Executive Systems

8.1.4.2.9 Spacecraft Telemetry and Command Simulation Subsystem

The Spacecraft Telemetry and Command Simulation subsystem performs the inverse function of

the Spacecraft Telemetry and Command Subsystem. It commutates telemetry data for routing to

other processes (normally the Spacecraft Communications Simulation Subsystem). It also decom-

mutates commands taken from other processes (normally the Spacecraft Communications Simula-

tion Subsystem).

8.1.4.3 PTPOCC Configurations

The network transparent manner in which the PTPOCC subsystems communicate allow processes

to be located on different processors to meet the processing requirements of the system. For a sys-

tem with minimal processing requirements, a real-time workstation processor could be used to ex-

ecute all subsystems. The most efficient solution is to use a front-end, real-time system handling

the communications and telemetry/command functions, one to many graphics workstations provid-

ing operator interaction, and another system providing simulation functions. The advantage to this

configuration is that new workstations could be added to support more users (the most common

required processing increase). This configuration would include the following processors which

would in turn run the listed subsystems:

• Telemetry and Command Processing System:

Operator command.

Events.

- GMT.

- Spacecraft Telemetry and Command.

- Spacecraft communications.

• Operator Interface System(s):

- Operator command.

- Operator display.

- Events.

- GMT.

• Telemetry and Command Simulation System:

- Operator command.

- Events.

- GMT.

Spacecraft Telemetry and Command Simulation.

Spacecraft Communications Simulation.

8.1.4.4 PTPOCC Implementation Plans

The documentation reviewed for this survey did not indicate that the PTPOCC system was at a

point in development to support the SMMOCC. Rather it was being implemented in phases on dif-

ferent types of hardware with various types of software. One of the problems is that some of the

standards upon which the PTPOCC is based are not yet mature enough to easily use (at least they

are not available as commercially supported products). One example is X Windows. For this rea-

son, some of the software was forced to use non-standard software as an interim solution. Another

problem is that the PTPOCC will be implemented on existing hardware (as opposed to specially

Page 8-14 Workstation Executives

TPOCC System Executive Systems

procured hardware). Therefore some of the interim prototypes do not represent the most effective

configuration.

The list of prototype configurations which have been completed or are planned in the near future

include the following:

• Operator Interface System (Sun implementation) - This processor is an operator work-

station which relies on a separate processor to provide real-time data. It will use Sun's

proprietary window system (SunView).

• Single Processor System - This is a real-time system based on a VME system running

VxWorks. The operator interface will be provided an X terminal over the Ethernet.

• Telemetry and Command Processing and Simulation Systems - This system will ex-

pand upon the Single Processor System to include a complete implementation of the

real-time communications, telemetry and command processing subsystems, and simu-

lation subsystems.

• Operator Interface System (IBM RT implementation) - This processor is an operator
workstation based on the IBM RT. It will use the X Windows for graphics support.

• SMMOCC Operation System - This system will be that used to support the operational

requirements of the SMMOCC. It will require additional subsystems for existing inter-

face communications and SMM-specific application requirements.

8.1.5 Applicability to the Concept Executive

The TPOCC concept provides a solid foundation for the design and implementation of a worksta-

tion executive which supports a small spacecraft control environment. Although smaller in scope,

the TPOCC concept offers a number of design approaches which are applicable to the Concept Ex-

ecutive. The TPOCC concept defines a system which is based on industry standards, uses state-

of-the-art workstations for processing and user interaction, and achieves configuration indepen-

dence by distributing data over the network.

The TPOCC concept is completely based on industry standard hardware and software. The

TPOCC concept will function on any hardware which meets the capability requirements and pro-

vides the required software. The TPOCC software is to be designed such that the primary functions

are implemented in a standard manner and then supported with system-specific software. One way

to accomplish this is to write standard "front-ends" to be used by the primary functions. These

front-ends are then implemented using the proprietary functions of the host computer. Although

this is a good approach when no standard exists, it is more efficient for the primary functions to

directly use a standard (such as TCP/IP or X Windows). The TPOCC system will use standards

when available and then provide front-ends for required functions which are not yet available as

standards.

The majority of the software which makes up the Concept Executive can and will be based on stan-

dards. However there are some requirements which may dictate use of proprietary features for the

sake of performance (data display) or lack of an available standard (real-time functions). One so-

lution to such problems is to develop standard front-end functions to be used by the executive soft-

ware. These front-ends are then implemented via the proprietary functions provided by the host

computer. This approach can be extended in that front-ends can be make to look and behave like

proposed standards (such as POSIX real-time extensions). In this way, software developed now

will not have to go through a major porting effort when full standards are available later.

Page 8-15 Workstation Executives

GCS System Executive Systems

Perhaps the most significant concept in the TPOCC is the ability to transparently distribute real-

time data in a single processor or between multiple processors over the network. This concept al-

lows a great deal of flexibility in terms of hardware configurations. The TPOCC concept uses in-

expensive and isolated real-time processors for the actual real-time data acquisition. This approach

isolates the true real-time requirements on the appropriate processor. In this way, common gener-

al-purpose workstations may be used for less real-time functions such as data manipulation and dis-

play. Although this approach increases the complexity of the software, it allows more cost-effec-

tive and efficient configurations to be developed. Note that a valid argument is in the case where

absolute real-time response is required for the entire data throughput path (acquisition, manipula-

tion, and display). In such a case, it may be necessary to use a general-purpose, tightly-coupled

real-time processor for all functions.

One of the goals of the Concept Executive is to support many different configurations of user work-

stations. An example is a server processor which is directly connected to the global networks pro-

viding all data. This processor would then provide data to other processors (connected via a sub-

net) which actually do the data processing and display. To accomplish this goal, it must be possible

to efficiently distribute large amounts of data across the local network. The TPOCC concept offers

one means of achieving this goal. However, it must be determined if this approach is efficient

enough for large amounts of data.

The TPOCC concept provides a complete user interface. This user interface is keyboard and

mouse based and should alleviate the requirement to ever access the native operating system com-

mand line interpreter. This user interface includes its own command language (described below)

and a well-defined window/mouse interface. The user interface attempts to provide all functions

which a user would ever need, therefore eliminating the need to access the operating system direct-

ly. One disadvantage of the interface is that the display format is rigidly defined. Various system

and message windows are placed in standard locations and cannot be removed or repositioned.

The TPOCC system provides a complete command language (TPOCC Operations Language) from

which all functions in the system may be controlled. This language is used for both interactive and

programmatic usage and is the primary programming interface for the user. The combination of

this language and the display definition tools provides a programming environment which should

satisfy the operational requirements of users. This language is intended to support all basic oper-

ational functions. It is expanded to support operations which are specific to the current project (sat-

ellite). Use of this language precludes the requirement of using either the native command line or

developing actual host programs (C, FORTRAN, etc.). This approach insures portability of appli-

cation software and provides the basis for certifying that an application will not perform an illegal

action during operational use.

Providing a complete user command language is not considered part of the Concept Executive.

Developing a new language would be useful for configuration management and user support func-

tions, but would require a great deal of development effort. It is also not reasonable to burden the

Concept Executive with this function, as it may not be necessary for all environments. If such an

interface is required, it should be developed as a layer above the Concept Executive.

8.2 GCS System

Kennedy Space Center (KSC) currently utilizes a complex distributed processing system called the

Launch Processing System (LPS) to checkout, control, and monitor space equipment being readied

Page 8-16 Workstation Executives

GCS System Executive Systems

for launch. Although this system was state-of-the-art when developed, it now has many limita-

tions, including:

• Limited hardware reconfigurability.

• Obsolete hardware.

• A large amount of custom hardware.

• Limited processor memory.

• A difficult test reconfiguration procedure.

Due to the problems listed above and to the increased launch load expected in the near future due

to space station and increased shuttle activity, it becomes obvious that a new launch checkout sys-

tem is required. The result is a set of specifications for the Genetic Checkout System (GCS). The
GCS will use the latest in hardware and software technology, will retain the best features of the

existing LPS, eliminate the existing limitations, and serve as the foundation upon which unique

test, checkout, and monitor systems are developed.

The Generic Checkout System is intended to serve as the foundation for the Test, Control, and

Monitor Subsystem (TCMS), which will be used to support Space Station testing. The GCS will

also be used as the basis for the replacement Checkout, Control, and Monitor Subsystem (CCMS)

responsible for shuttle support (the new system is called the CCMS II).

The Generic Checkout System (or a subset of it) is also referred to as "core" or the "generic" sys-

tem. All terms are interchangeable and refer to the fundamental system concept. For the remainder

of this document, the term "generic system" will be used.

8.2.1 Contact Point

Engineering Development Directorate

Kennedy Space Center

8.2.2 Review Process

The review process for the generic system involved examination of the following documents:

• Core Electronics System Specification.

• Ground Data Management System (GDMS) Facility and Equipment Design Plan.

The specification document provided a good overview of the generic system concept. This docu-

ment was primarily a requirements and specifications document and did not provide detailed de-

sign. However, it still provided a good foundation for review.

8.2.3 Generic System Requirements

The high-level requirements for the generic system are presented in the following subsections.

These requirements only represent the generic system; they do not include specific requirements

for either the TCMS or CCMS II systems.

8.2.3.1 Programmatic Requirements

Programmatic requirements define the basic design direction of the generic system. The program-

matic requirements are as follows:

• The system design shall support a 30-year life cycle in a cost-effective manner.

Page 8-17 Workstation Executives

GCS System Executive Systems

• The system shall primarily consist of COTS hardware and software. It will use widely

supported commercial standards.

• System flexibility shall be a primary goal. Vendor-independent implementations shall

be used whenever practical.

• The system shall be comprised of modular subsystems. Widely supported interface

techniques shall be used. All subsystem hardware and software modules shall be up-

gradable with minimal or no changes to other subsystems.

• The system shall be designed to allow incorporation of, and seamless transition to new

hardware and software technologies.

• All subsystem modules shall comply with industry standard hardware and software in-

terfaces and protocols. Compliance shall include, but not be limited to:

Standard programming languages.

Utilities.

Operating system interfaces.

Communication protocols.

• The system shall have the capability to be logically and physically partitioned into in-

dependent subsets. The capability of a subset may vary from a single element test to a

large integrated test.

• The system shall provide the capability for fast and cost-effective maintenance of the

system life cycle.

• The system shall provide automated tools for the rapid and efficient detection and iso-

lation of system faults and failures.

8.2.3.2 Functional Requirements

Functional requirements define the capabilities provided by the system. The functional require-
ments are as follows:

• The system operating system shall allow users to create applications which are indepen-

dent of any particular subsystem processor.

• The system shall provide the capability of defining, managing, and allocating system

resources to support a given test configuration.

• The system shall provide the capability to build, load, and modify test configurations.

• The system shall provide the capability to define, build, maintain, and utilize data bases

of test equipment characterization and definition data.

• The system shall provide the capability to develop, verify, and implement user applica-

tion software.

• The system shall provide the capability to access data bases on different subsystems

within a test configuration. Access will be via a standard query language.

• The system shall provide the capability to record and archive test and transaction data.

• The system shall provide data analysis and data reduction capabilities to assist a user in

assessing test element and/or system performance.

Page 8-18 Workstation Executives

GCS System Executive Systems

• The system shall provide the capability to perform an end-to-end operational readiness

test to verify a test configuration.

• The system hardware will operate within the available power capability of the facility.

• The system shall provide an equipment health and status monitoring capability.

• The system shall provide the capability for manual or automatic switch-over to redun-

dant systems.

• When subsystems connected to a network are powered up or down, this shall not disrupt

communications over the network.

• The operational status of backup subsystems shall be monitored to ensure availability.

• The system shall provide an independent sating capability for the emergency control of

critical and/or hazardous systems.

• The system shall provide security to protect the system and test elements from access

by unauthorized users.

• No command shall be executed without validation of the command source and context.

• No recoverable error shall halt system-execution or data acquisition processing.

• Automatic correction of data and memory errors shall not be hidden from the system.

Notification of any such corrective action shall be made available.

• The system shall function within what is considered an electronically hostile environ-

ment.

• The system shall provide the capability to direct test and graphic files and screen images

to local or remote storage and/or output peripheral devices.

• The system shall provide, through a Data Security System, the capability to monitor for

unauthorized attempts to gain access.

8.2.3.2.1 Interface Requirements

Interface requirements define the manner in which the system interfaces with other external sys-

tems. The interface requirements are as follows:

• The system shall provide the capability to interface with external processing and mon-

itoring systems.

• The system shall provide transient protection on all power supplies and input/output
hardware interfaces.

• Commercially purchased equipment shall have protection provided on all processed

data input/outputs to the extent specified in commercial specifications.

• Purchased interfaces shall have protection up to the extent of the manufacturer's stan-

dard practice.

8.2.3.2.2 Performance Requirements

Performance requirements define the ability of the system to acquire and process test data. The

performance requirements are as follows:

The system throughput requirement is 50,000 significant changes of measurements per
second.

Page 8-19 Workstation Executives

GCS System Executive Systems

• The system shall be capable of responding to at least 100 measurement exceptions per

second on any single front-end data link.

• The system shall be capable of responding to at least 400 measurement exceptions per

second on all front-end data links.

• The system shall be capable of supporting a total of at least 700 subsystem-to-sub-

system transactions per second.

• The system shall provide a mechanism that will prohibit updates of multi-word data

while that data is being accessed. This mechanism shall support a total of up to 1000

accesses of this type per second.

• The system shall support the capability for any application program to access the cur-

rent value in shared memory of any measurement in less than 1 millisecond.

• The system shall support the capability for any application program to continuously ac-

cess a single measurement at least 200 times per second.

• The system shall allow update of display data on a user-generated skeleton at least once

per second (not including display skeletons which are not visible).

• The system response time for a reactive sequence shall be less than 50 milliseconds.

• The system shall be able to increase overall performance to meet new requirements by

expanding subsystem performance and capacities to the maximums required within the

subsystem specifications. Increase is via better performance, capacities, and new tech-

nologies.

8.2.3.2.3 Other Requirements

This section addresses miscellaneous system requirements. These requirements are as follows:

• The system shall provide an Expert System development environment. This environ-

ment will include all software tools, utilities, and aids to develop and validate artificial

intelligence and expert system user-level and system-level applications.

• The system shall provide access to all data within a test configuration by all users, sub-

ject to a user's permission level.

• The system shall provide the capability for users and applications to asynchronously
route formatted and unformatted commands, data, and information to other users and

applications on the system.

• The system shall provide an Operations Support function controlling test configuration

equipment power-up, system and operational software load, and test configuration ac-
tivation and deactivation.

• Subsystem components shall be modularly replaceable and interchangeable and shall

be configured to allow easy repair, replacement, or upgrade.

• On-line maintenance and diagnostic functions will be accessible from any workstation

in a test configuration.

• A system-availability model, such as the Automated Reliability Assessment Model de-

veloped by the Langley Research Center, shall be used to verify that subsystem MTBF

and MTBR data supports system availability requirements.

Page 8-20 Workstation Executives

GCS System Executive Systems

• User-room workstation housings shall be comprised of modular, movable, and recon-

figurable components.

• Custom designs, boards in the Data Acquisition Module and the Remote Interface

Module supporting items under test shall be designed such that the final output can be

verified through an independent channel on the board.

• Failure of a subsystem on the network shall not interfere with the normal operations or

communications of the rest of the subsystems on the network.

• Each subsystem shall maintain a status log (success or failure) of transactions it per-
forms on the network.

• A loss of redundancy shall be treated as a system error, and the system shall generate

the appropriate messages to the operators to provide this information.

8.2.4 System Description

The generic system provides a general-purpose, cost effective, flexible, real-time, test and check-

out system capability. This system defines the necessary hardware, software, tools, environments,

and support to develop and execute applications to perform integration and testing for a variety of

space systems. The generic system is not an implementation, but a concept for the functions and

capabilities required for specific test and checkout systems (such as for shuttle and Space Station).

The TCMS and CCMS 17systems are the first applications of the generic concept. All generic con-

cepts and requirements are fully represented in both the TCMS and CCMS II systems. Each sys-

tem also includes application-specific extensions required to support the particular environment.

A discussion of these extensions is beyond the scope of this document.

The generic system consists of a core system with front-end and back-end interface extensions.

The central portion shall consist of a distributed network of real-time processors. All processors

will utilize standard network interfaces to allow additional processors to be added and logical "sub-

sets" defined for the requirements of a particular test. A subset is a logical association of front-end,

core, and back-end processors.

The front-end extension shall consists of a number of independent clusters of Data Acquisition

Subsystems (DAS). Each cluster will contain some number of Data Acquisition Modules (DAM)

connected to a single Data Acquisition Processor (DAP). The DAM's directly access the hardware

to be tested. They perform all hardware-dependent processing and route the data to the DAP. The

DAP accumulates the data and concentrates it into a standard format for use by other processing

subsystems.

The core system will consist of a number of Application Processor Subsystems (APS) upon which

the majority of the data processing applications are executed.

The back-end extension will consist of clusters of workstations. These Display Processors (DPS)

provide the user interface to the core system. These workstations will provide a multi-window

graphic interface which incorporates the latest in display technology.

This architecture will consist of five major subsystems which communicate via two network sub-

systems. The subsystems include the following:

• Data Acquisition Subsystem (DAS).

• Application Processor Subsystem (APS).

Page 8-21 Workstation Executives

GCS System Executive Systems

• Archive and Retrieval Subsystem (ARS).

• Data Base Subsystem (DBS).

• Display Processor Subsystem (DPS).

• Global Network Subsystem (GNS).

• Display network Subsystem (DNS).

Figure 8-2 illustrates the configuration of the different subsystems. The dotted line outlines one

possible test configuration subset (subsets are explained in the following discussion).

I L,_pLay I

/ =.-.==-._ ,,mmm_mmmmmmm
m

i pProc_sor Proc_sor

Subsyln_a Subay_n

Figure 8-2 Generic Checkout System

In addition to the major subsystems described above, there are additional subsystems which pro-

vide specialized functions and capabilities:

• Digital Record and Retrieval Subsystem (DRRS).

• Configuration, Calibration, and Test Sets (CCATS).

• Remote Interface Modules (RIM).

• Software Production Facility (SPF).

The Global Network Subsystem will allow the system to be partitioned into independent logical

subsets for testing purposes. A subset defines a way of logically associating (via the network) the

required DAS, APS, DPS, DBS, and ARS subsystems. The ability to dynamically reconfigure the

system supports a variety of test requirements with a single integrated system. Note that a subset

will consist of the two network subsystems and at least one of each of the remaining five major

subsystems (DAS, APS, DBS, ARS, and DPS).

Page 8-22 Workstation Executives

GCS System
I

Executive Systems

The generic system data flow involves taking raw data from the test element into the Data Acqui-

sition Subsystem, converting it to a standard format and distributing it on the Global Network Sub-

system, using the Application Processor Subsystem to process the data and generate test commands

for return to the Data Acquisition Subsystem. During this time, the Display Processing Subsystem

is used by the test operator to monitor and control the test. In addition, the Archive and Retrieval

Subsystem and the Data Base Subsystem are used to save and retrieve test data.

Figure 8-3 illustrates the generic system data flow between each of the major subsystems.

Page 8-23 Workstation Executives

GCS System Executive Systems

U_

Input

DBS

h

P

M_agm'ne_'_
(u)

_ (o> i I

.............. r.XR. S...........................

(s)

" I'-i I',I- I _T I
' (q_ I

I_ 1 I i _ I I _-'_°_ i

J. J I L__..............?
|

DAS I _)

[t °'li _' 1i I

i I i _o_ J I <_ I
T

CompmsiOa(B)]

(A)

I Trot J
Element

LE

Figure 8-3 Generic Checkout System Data Flow

The following subsections provide a more detailed description of the processes within the sub-

systems and the flow of data between them.

8.2.4.1 Data Acquisition Subsystem (DAS)

The Data Acquisition Subsystem (DAS) processes all responses from and commands (H) to the test

element. The DAS takes standard commands and converts them into the format required by the

Page 8-24 Workstation Executives

GCS System Executive Systems

test element. Similarly, the DAS converts test element-specific data to a standard format for dis-

tribution to the Application Processor Subsystem.

The DAS retrieves test element-specific data (A) from the test element. This data is then com-

pressed (B) and examined to determine if any exceptional values were retrieved (C). If an excep-

tion occurs, a reactive sequence may be initiated (G). The reactive sequence will initiate a com-

mand to enact the appropriate action on the test element.

The compressed data is then processed (E) and released in this form. Approximately 20 percent of

the data is also released in raw form (as opposed to processed). All data is distributed in a standard

format.

The Data Acquisition Subsystem consists of a Data Acquisition Module (DAM) and a Data Acqui-

sition Processor (DAP). The DAS may consist of 1 to 16 DAM's and 1 or 2 DAP's. The purpose

of the DAM is to implement both standard tests and those unique to the test element. The DAM

isolates the specifics of the test element from the rest of the system (and the rest of the DAS). The

basic functions of the DAM are:

• Data compression.

• Exception checking.

• Linearization.

• Trend checking.

• Data checking.

• Engineering units conversion.

The DAP provides the functions required to concentrate and communicate the data to the remain-

der of the processing system. The basic functions of the DAP are:

• Data concentration.

• Reactive sequences.

• Command validation and authentication.

• Table management.

• Message routing.

• Health checking.

8.2.4.2 Application Processor Subsystem (APS)

The Application Processor Subsystem (APS) provides the primary execution environment for test

applications, which include system and user programs. Applications in the APS will monitor data

from the Data Acquisition Subsystem (F) for necessary test information. This information may be

sent to a Display Processor Subsystem for display (O), relayed to other applications in the APS and

DPS (M and N) for further processing, or used to generate a command. All generated commands

are routed through the command processor (K). This command processor validates the command

and performs any initialization required for proper command execution.

The APS will consist of 1 or more Application Processors connected via the network. The APS

interfaces to the Data Acquisition Subsystem via the Global Network Subsystem and the Display

Processing Subsystem via the Display Network Subsystem. The APS will execute system func-

Page 8-25 Workstation Executives

GCS System Executive Systems

tions such as control of user access, managing system resources, and performing system diagnos-

tics.

8.2.4.3 Display Processor Subsystem (DPS)

The Display Processor Subsystem provides the system operator interface. The user display process

(O) presents data on the state of the entire test system. Displays may be driven by applications in

the DPS (N), Application Processor Subsystem (J), or from data in the Data Base Subsystem (T).

The DPS will provide mouse input processing (with keyboard alternative), window management,

and other user support functions.

The DPS is the back-end extension to the processor core. The DPS will present a workstation-

based user interface which is efficient and consistent across all applications. This will simplify the

operators interaction and minimize the required training. The DPS will consist of one or more

high-performance, color, engineering-level workstations, as required by the number of users.

will provide all functions necessary for efficient man-machine interaction. This in-The DPS

cludes:

Local storage of display skeletons and programs.

On-line build and modify of displays.

Limited local processing of user programs.

Remote processing capability.

Multi-window environment.

Simultaneous virtual machine sessions.

• Real-time display of measurement data.

In addition to providing user-level windows, the DPS will provide a number of system-generated

windows. This includes windows for:

• System messages.

• Exception messages.

• Data display.

• System status.

• Test configuration and control.

8.2.4.4 Archive and Retrieval Subsystem (ARS)

The Archive and Retrieval Subsystem records the commands and data exchanged between the Data

Acquisition Subsystem and the Application Processor Subsystem. The recording process (P) mon-

itors the commands (L) and data (F) traffic and records the information on:

• Two permanent archive records.

• A temporary near-real-time (NRT) record.

The permanent archive record will consist of a permanent archive media (such as optical disks) and

a removable media which is transferred to the Database System (DBS) when appropriate. The

ARS will interface with the DBS to provide access to temporary NRT data or any archived data.

This data is transferred to the DBS from which it may be retrieved by a user or application.

Page 8-26 Workstation Executives

GCS System Executive Systems

8.2.4.5 Database Subsystem

The Data Base Subsystem (DBS) provides retrieval and playback ability for examining stored test

information. The retrieval process (T) takes test data from archives in the DBS, from NRT tempo-

rary media in the Archive and Retrieval Subsystem, or from a permanent archive in the ARS. This

data is formatted and distributed to the requesting user (O) or application in the Display Processing

Subsystem (N) or the Application Processor Subsystem (J).

The DBS provides a configuration management process (U) which affects the operation of all sub-

systems. The Software Production Facility (SPF) shall contain the "super-set" of all application

libraries, data bases, and tables. The DBS is used to store the subset of this information which per-

tains to the current test configuration. Although the SPF is the focal point for configuration man-

agement, the DBS provides configuration management during test operations.

8.2.4.6 Global Network Subsystem (GNS)

The purpose of the two network subsystems is to allow data, commands, and display information

to be exchanged between processor subsystems. The networks also allow independent subsets to

be defined to support multiple test activity within one integrated system. The Global Network Sub-

system provides the following capabilities:

• Routing of information (mostly test data/commands) between DAS's, APS's, ARS's,

DBS's, and DRRS's. This routing is performed on global communication and data bus-

es.

• Connections for remote maintenance of each of the subsystems listed above plus all net-

work devices.

• Ability to isolate groups of subsystems into subsets.

• Redundant path and switch-over abilities.

8.2.4.7 Display Network Subsystem (DPS)

The Display Network Subsystem will consist of a number of local display buses, each of which is

in turn connected to the global display bus via a bridge. The DPS subsystem will provide the fol-

lowing capabilities:

• The ability to route data (mostly workstation display, command, or retrieval data) be-

tween DPS's, APS's, ARS's, DBS's, DRRS's, user-provided equipment, the Software

Production Facility, and external systems.

• The ability to isolate DPS's and APS's into local display buses with bridged interfaces

to the global display bus.

• The ability to control all local display bus to global display bus interfaces.

• The ability to connect DP's, DBS's, ARS's, DRRS's, user-provided equipment, and ex-

ternal system interfaces to the global display bus.

• The ability to access any subsystem on the DNS from a user workstation (assuming user

has the appropriate permissions).

8.2.4.8 Digital Record and Retrieval Subsystem (DRRS)

The Digital Record and Retrieval Subsystem includes a process (V) which records the command

(I) and data (A) exchanged between the test element and the Data Acquisition Subsystem. This

Page 8-27 Workstation Executives

GCS System Executive Systems

information may be retrieved and used by applications executing on the Display Processing Sub-

system and the Application Processor Subsystem.

8.2.4.9 Configuration, Calibration, and Test Set Subsystem (CCATS)

The Configuration, Calibration, and Test Set Subsystem provides the ability to monitor any system

data bus (Global Network Subsystem, Display Network Subsystem). This is accomplished via use

of commercial and custom network analyzers, common generic subsystems, and special test equip-

ment.

8.2.4.10 Remote Interface Module (RIM)

The Remote Interface Module provides the interface between the Data Acquisition Module (DAM)

of the DAS and the Ground or Flight support equipment.

8.2.4.11 Software Production Facility (SPF)

The Software Production Facility provides an environment for development, integration, testing,

configuration management, and maintenance of user and system software. This includes all tools

required for effective software development and maintenance. The functions provided by the SPF
include:

• Software management support (word processing, scheduling, and project manage-

ment).

• Software production tools:

User application software compilers.

System application software compilers.

Editors, debuggers, linkers, configuration tools.

• Database creation and maintenance:

Test article data base.

Measurement and command data base.

Hardware and software test configuration management.

• Test management tools.

• Simulation support:

Model development.

Simulation software development and verification.

Operator training.

Test support.

The SPF will provide a central host and a network of workstations to provide the development en-

vironment. This environment will be logically isolated from the operational test system. The SPF

will be connected to the genetic system via the Global Network Subsystem.

8.2.4.12 Software Description

The software for the genetic system will consist of system and support software. System software

is that which is common to all subsystems. Support software is that used on specific subsystems.

The remainder of this section will discuss the system software of the genetic system as it most

clearly defines "executive" functions.

Page 8-28 Workstation Executives

GCS System Executive Systems

The generic system will function in one of several operational modes. These include the following:

• Test development - provides the functions required to support user software develop-

ment.

• Configuration - provides the functions necessary to configure a subsystem for opera-

tional use.

• Operations - provides functions required for the generic system to interface with the test
element.

• Maintenance - provides functions necessary to support system diagnostics and mainte-

nance.

The system software is divided into the following functions (the following subsections will discuss

these functions in more detail):

• Operations support.

• System configuration.

• System maintenance.

• Operating system and utilities.

• Network interface.

• System load and initialization.

• System integrity.

• Diagnostic aids.

• System security.

• Test application execution.

• System messages.

8.2.4.12.1 Operations Support

The Operations Support function will execute in an Application Processor Subsystem of each test

subset. This function is the central point from which the test subset may be initialized, monitored,

and operated. This function provides the following capabilities:

• Coordination and control of power-up, initialization, and operational software down-

loads.

• Failure detection and corrective actions including subset reconfiguration (correction is

via interface to the System Configuration function).

• Hierarchal status displays with increased levels of detail.

• Configuration displays for overviews or details of the subset configuration.

• Recording of configuration and health data for later use in subset configuration verifi-
cation.

• Status reporting of any command, measurement, subsystem, and subset configuration.

• Monitoring for configuration changes.

• Data between control rooms will be interchangeable via a standard data base.

• Access to the Problem Reporting and Corrective Action System.

Page 8-29 Workstation Executives

GCS System Executive Systems

• Remote configuration management only from a specific Application Processor.

• All subsystems and components on the network will provide health and status informa-

tion.

8.2.4.12.2 System Configuration

The System Configuration function will execute in each facility supported by the generic system.

This function will execute on a designated Application Processor. This function maintains the con-

figuration and health/status of all networks and subsystems. The System Configuration function

will interface with the Operations Support function in each subset to detect failures and initiate the

required corrective actions.

8.2.4.12.3 System Maintenance

The System Maintenance function will execute in each facility supported by the generic system.

This function will execute on a designated Application Processor (normally the same as used for

the System Configuration function). This function provides on-line maintenance capabilities in-

cluding:

• Determining the status, availability, and configuration of system hardware.

• Monitoring, analyzing, testing, and troubleshooting hardware and network failures.

• Executing diagnostics in all subsystems (except Display Processors).

• Performing on and off-line diagnostics in all subsystems (except Display Processors).

• Diagnosing faults at the subsystem level and then isolating the fault to the particular

module.

• Performing subsystem data dumps.

8.2.4.12.4 Operating System and Utilities

The generic system's operating system will allow users to develop applications which are indepen-

dent of any subsystem processor. The Operating System and Utilities will be a common develop-

ment environment which is consistent across all subsystem processors. This operating system will

initially conform to POSIX 1003.1, but must later adhere to the complete POSIX description. Note

that IEEE standard 1003.1 only specifies the programmatic operating system interface. This is be-

ing expanded to include command line access, networking, real-time extensions, etc.

The generic system's operating system must provide real-time extensions for use on the DAP, AP,

DRRS, and ARS subsystems. The real-time mechanisms to be provided include:

• Scheduler supports fixed priorities which do not age (as normal UNIX).

• Process dispatch latency of less than 10 milliseconds (amount of time it takes a blocked

process to respond to an event).

• Time of day must be available in resolution of milliseconds.

• Timers supporting resolution in the microsecond range.

• Asynchronous input/output.

• Ability to lock a process (or portion) in core memory.

Page 8-30 Workstation Executives

GCS System Executive Systems

8.2.4.12.5 Network Interface

The Network Interface function is based upon the Ethemet standard. Transmission Control Proto-

col/Internet Protocol (TCP/IP) will be used for data transport. In the future, all network access will

adhere to the International Standards Organization's (ISO) implementation of the Open System In-

terconnect (OSI) 7 layer model when this standard is defined and available.

8.2.4.12.6 System Load and Initialization

The System Load and Initialization function provides the ability to initialize the system to support

the test configuration. This function provides the capability for the following forms of system ini-

tialization:

• Network configuration - allows the network to be logically partitioned into test config-

urations.

° System load and initialization - allows a subsystem to be loaded with all required sys-

tem software.

° Subsystem Initialization - allows a subsystem to be initialized and configured to allow

operational use.

° Test application distribution - allows a subsystem to be loaded with the test applications

required to support a particular test configuration.

8.2.4.12.7 System Integrity

The System Integrity function monitors the health of the system and subsystems to insure their re-

liability during operational use. This function provides the capability for the following:

• Subsystem health and status - determines the health and status of a subsystem and all

attached peripherals.

• System health monitor - part of the Operations Support function. Retrieves the infor-

mation from each subsystem health and status functions and provides hierarchal dis-

plays.

• Health data analysis - the health data will be archived on the Archive and Retrieval Sub-

system. This data will be used for long-time health reports, failure trends, health over

a time period, failure and re-try attempt counts, and system redundancy status.

° Operation readiness test - verifies that a test configuration is prepared to support oper-
ational use.

• System redundancy management - ability to control the switch-over to a redundant sys-

tem during a failure.

8.2.4.12.8 Diagnostic Aids

The Diagnostic Aids function provides the ability for a subsystem to determine its own health and

status. This includes the ability to perform a self test, provide on-line fault reporting, and system

debugging tools.

8.2.4.12.9 System Security

The System Security function provides a complete hierarchy of protections and permissions which

range from individual users to system-wide. This function will provide the following forms of se-

curity:

Page 8-31 Workstation Executives

GCS System Executive Systems

• User account security - all users will have individual user accounts. These accounts

will be strictly controlled to prevent access to other user's or system data and functions.

• Use account administration - user accounts will be administered via a menu-driven ap-

plication which is only accessible by specific users.

• Super user capabilities - super user capabilities will be restricted to system administra-

tors.

• Process execution security - execution of programs during operational mode is restrict-

ed. Users will only be allowed to execute programs for which they are allowed.

• User privilege restrictions - privileges will be restricted on a per user or group basis.

• Command issuance security - restrictions will be placed on issuance of commands to

the test element.

• Proprietary data protection - data considered private by a user will not be available for

use by other users.

8.2.4.12.10 Test Application Execution

The Test Application Execution function provides the services required by an application to per-

form a test. This function will provide the appropriate libraries and services for use on all proces-

sors on which user applications may reside, including the Application Processor, Display Proces-

sor, and Data Acquisition Processor. This function will provide the following services:

• Real-time checkout support library - provides bindings for all languages supported by

the development environment. The following general capabilities are provided:

- Access and control of user displays and windows.

- Control of events which initiate interrupts.

- Read current value of time/data, timers, or measurement data.

- Read/modify measurement processing parameters.

8.2.4.12.11 System Messages

The System Messages function will provide users and applications with messages corresponding

to various types of system events. All messages will be presented in a meaningful, English-like

syntax. The different types of messages will include:

• Fatal system errors.

• Fatal subsystem errors.

• Warning messages.

• Informational messages.

8.2.5 Applicability to the Concept Executive

The Generic Checkout System is a concept which includes many functions applicable to the Con-

cept Executive. While the generic system is much larger in scope and does not directly define an

executive level of software, it still provides concepts which may be applied. From a requirements

point of view, the generic and Concept Executive systems are similar. Note that documents re-

viewed for the generic system were high-level specifications and did not discuss the actual soft-

ware design. Therefore it was not possible at this time to evaluate or apply design and implemen-

tation concepts.

Page 8-32 Workstation Executives

MAE System Executive Systems

The generic system is heavily based on standard hardware and software. This includes all software

to be based on the full implementation of POSIX when that standard is available. All network com-
munications are also to be based on current standards (TCP/IP) and then migrate to ISO's imple-

mentation of the OSI model when that standard is available. This allows system and application

software to easily port to replacement or additional processors. Use of standards allows the envi-

ronment to grow as necessary to support additional test requirements. This also allows more effi-

cient processors to be added as they become available.

The genetic system includes a well-defined health and status function which monitors all networks

and subsystems. This function also automatically and dynamically reconfigures the system to re-

cover from faults. The Concept Executive should include an integrated function of this type which

gathers the data needed to evaluate the status of all workstations, processes, and local networks.

The executive should also automatically determine its local status and be capable of responding to

failures.

A significant part of the functionality provided by the generic system is directed towards dealing

with different types of spacecraft hardware which must be tested. This makes the interface to the

test hardware a significant part of the system, as it must be capable of testing many different sys-

tems. Another unique function of the generic system is the ability to partition the system into sub-

sets for testing purposes. Neither function is a major concern for the Concept Executive.

The generic system is fully distributed in that different major subsystems exist on separate proces-

sors (or clusters of processors). The primary functions of data acquisition, test application execu-

tion, and user interaction are present on separate processors. This separation allows expansion by

adding processors and allows processors to be used for the purpose they are best suited. This ap-

proach could be used in the Concept Executive to distribute processing based on hardware capa-
bilities.

8.3 MAE System

The Multi-satellite Support Operations Control Center (MSOCC) Application Executive (MAE) is

the system currently in use at Goddard Space Center. Goddard Space Flight Center is responsible

for support of a large number of satellite spacecraft. The MAE software system executes on a Con-

current 3280 applications processor (AP). The MAE system provides a generic set of services re-

quired by different satellite spacecraft. The basic functionality provided by MAE is then expanded

to support the mission-specific requirements of individual satellites.

8.3.1 Contact Point

Code 510 and 511

Goddard Space Flight Center

8.3.2 Review Process

The review process for the MAE system involved examination of the following document:

• Multi-Satellite Operations Control Center (MSOCC) Applications Executive (MAE)

Programmer's Guide.

The document reviewed is intended for an application programmer who is planning to use the ex-

ecutive to develop mission-specific software. As such it provides little overview material and is

geared towards interfacing to the functions provided by the executive. This includes a detailed de-

scription of available functions, parameters, and global (FORTRAN common) data.

Page 8-33 Workstation Executives

MAE System Executive Systems

8.3.3 System Description

When developing a control center for a satellite, mission programmers will use MAE as the foun-

dation for the system software. MAE provides a generic, primitive set of functions which support

the basic requirements of a mission. Mission programmers will interface with MAE and add the

required mission-specific software. MAE is a true executive as it provides the core set of functions

required by applications programmers. This is necessary in such an environment as a control cen-
ter environment must be developed for each satellite. Use of a common executive such as MAE

reduces the amount of custom code which must be developed for each such mission. Figure 8-4

illustrates the relationship of MAE to other system hardware and software.

MAE

Uoncurrent Operating System and Interfaces

:System Hardware (Application Processor and _pectai Purpose)

Figure 8-4 Location of MAE in System Hierarchy

The dividing line between the functionality provided by MAE and that left to mission-specific soft-

ware is somewhat arbitrary. Nevertheless, the level of functionality provided by MAE is a good

example of what an executive should provide to its application programmers.

8.3.3.1 Functional Overview

A complete mission control center system consists of MAE and mission supplied subsystems. The

subsystems provided by MAE include the following:

• External interfaces.

• Display.

• System Test and Operations Language (STOL).

• Network Control Center (NCC).

• History.

• Database.

• Library.

The Display Subsystem includes only a subset of the required functionality. The subsystems which

must be provided by the mission programmer include the following:

• Telemetry.

• Command.

• Off-line.

The mission developer must add software for the above listed subsections. For the telemetry and

command subsystems, functions exist for allocating buffers and communicating with the

NASCOM interface which communicates with the spacecraft (described in External Interfaces).

The majority of the software described is used in an on-line manner. Mission developers must pro-

vide a separate off-line system as required.

Page 8-34 Workstation Executives

MAE System Executive Systems

The following section briefly describes the functionality provided by the MAE-supplied sub-

systems.

8.3.3.2 External Interfaces Subsystem

The External Interfaces Subsystem provides access to the external systems associated with a mis-

sion. This includes interfaces for the following:

• Idle System.

• NASCOM.

• Telemetry and Command (TAC).

• Terminal Interface.

• NCC.

• Device Configuration.

Each of these interfaces will be described in the following sections. Most of the interfaces (and

other functions) require the use of buffers. MAE provides a number of buffer pools which may be

used for this function. MAE provides the following buffer pools:

• (1) NASCOM input.

• (1) NASCOM output.

• (12) Mission Operations Division Local Area Network (MODLAN) pools (used by Idle

System and on-line software).

Buffer pools consist of a varying number of buffers ranging from 5 to 30. The sizes of the buffers

in a pool ranges from 128 bytes to 4094 bytes.

MAE provides a number of functions for getting, returning, and linking buffer pools.

8.3.3.2.1 Idle System Interface

The Idle System is a mission independent task which is separate from the on-line mission support

system. The Idle System consists of a set of tasks when the AP is booted and not executing the

tasks which are required for mission support (the system is "idle" as it is not controlling a mission).

The Idle System interfaces to the Mission Operations Division Local Area Network (MODLAN).

This system establishes sessions and allows file transfer to and from hosts on the MODLAN. The

Idle System Interface allows direct control over Idle System functions (sessions, file transfer) via

STOL directives.

Communication with the hosts on the MODLAN is handled by the Network Executive (NETEX)

software system. This package is responsible for routing and session initialization. From an ap-

plication programmers perspective, the following functions are provided:

• Offer - offer connection services to other hosts.

• Connect - establish a session with another host.

• Read - read data from a host.

• Write - write data to a host.

• Close - normal session termination.

• Disconnect - abnormal session termination.

Page 8-35 Workstation Executives

MAE System Executive Systems

8.3.3.2.2 NASCOM Interface

The NASCOM Interface is used by all AP applications to send and receive data blocks to the

NASCOM driver. The NASCOM interface also accepts history data for the purposes of simulation

and testing. The various types of data blocks received by the NASCOM Interface include:

• Telemetry.

• NCC.

• Local TAC.

• Command echoes.

• Simulation data (history).

The different types of data blocks output includes:

• Command.

• NCC.

• Local TAC.

All input and output blocks are logged to the history file (via the history subsystem). The
NASCOM Interface buffers all blocks received and routes them to the appropriate AP task. To

output a block, the programmer will get a buffer, fill it with data, and then queue it for output to
the NASCOM driver.

8.3.3.2.3 TAC Interface

The Telemetry and Command (TAC) Interface provides the application processor operator with re-

mote control of the TAC.

8,3.3.2.4 Terminal Interface

The Terminal Interface provides communications between the AP applications and the operator

terminals. This interface provides the following functions:

• Logging terminals into and out of the STOL environment.

• Reading STOL inputs from the operator terminals.

• Writing STOL prompts, STOL status messages, event updates, and page updates to the

operator terminals.

• Bypassing the terminal interface for special requirements.

When using the on-line system, the user will always log into the STOL environment. After this

point, all AP application software will receive input via STOL. The Terminal Interface provides

various functions for terminal output of different messages and events.

The terminal display during an on-line session is partitioned into lines (or sets of lines) for input

and different types of output. Colors are extensively used to differentiate meaning of different

lines. Figure 8-5 illustrates the layout of the display.

Page 8-36
Workstation Executives

MAE System Executive Systems
I I

lnes' 1 ann Z) t'rompt Lineines 2t ann 4) Input Line
ines 5 and b) Manual _tatus Line

Lines 7 ann 8) t'roc EChO Line

Lines Y aria IU) Proc _tatus L_ne

Lines 11 ann 12) btanaara neaaer Line

Lmes 121 ann 46) user Defmea Area Including 'N' Event Message Lines

Line 4_) Idriticai Message Line

Line 4/) Nut; I_vent Line

Figure 8-5 MAE Display Format

The Terminal Interface does not provide functions for page updates (lines 13-46). This mission-

specific software must be provided by the mission developer.

8.3.3.2.5 GMT Interface

The GMT Interface communicates with the GMT device for the current time. This information is

stored globally to allow access by all AP applications.

8.3.3.2.6 Device Configuration Interface

The Device Configuration Interface allows AP applications to obtain status and maintain the con-

figuration of all AP peripherals including CRT's, line printers, tape devices, and stripchart record-
er.

This interface also allows direct access to line printers. Functions are provided for opening, writing

to, and closing the AP line printer.

8.3.3.3 Display Subsystem

The Display Subsystem provides library functions for event processing. Events are English text

messages generated by applications running on the AP. This information is required to communi-

cate system and satellite status to the AP operator. Event processing is performed by three tasks

which supervise the following:

• Initialization of a central event queue (to which all events are sent).

• Transfer of event messages from the queue to buffers for appropriate event destination.

• Output of event buffers to event printer.

The Display Subsystem handles output of event messages to the static lines shown for the sample

terminal display. Mission-specific software is responsible for output of events to the user defined

Page 8-37 Workstation Executives

MAE System Executive Systems

area and for relating page display to specific events. The Display Subsystem only supports event

processing. This subsystem does not provide support for generation of display pages. This is the

responsibility of the mission-specific software.

8.3.3.4 STOL Subsystem

The System Test and Operations Language (STOL) is a complete high-level language which al-

lows the operator to control the application processor. STOL provides the required generic func-

tionality and is the primary means whereby operators control a mission. Use of STOL eliminates

the need for the operator to use the host operating system command line interface.

STOL statements are called "directives." Directives may be entered interactively, read from pro-

cedure files, or issued internally from applications. STOL directives are interpreted and executed

as follows:

• Logs directive to events subsystem.

• Verifies authorization of the user initiating the directive(s).

• Performs syntax checking.

• Routes directive to appropriate applications task.

The operator is allowed to interactively edit STOL procedures using the system editor. STOL pro-

cedures provide a number of programming features, including:

• Up to 7 levels of procedure nesting.

• String argument passing and substitution.

• Access to data base variables (system and user).

• Branching.

• Conditional directive execution.

• Allows operator to control procedure execution.

• Procedure-unique directives, including proc/endproc, start, wait, go, goto, position, if,

block if, step, ask, return, and killproc.

STOL includes a basic set of directives required for all missions. MAE allows new STOL direc-

tives to be added for mission-specific requirements. Mission-specific directives are created by:

• Building a "directive definition" which defines the directive syntax.

• Design and implementation of an on-line task to execute the directive.

8.3.3.5 NCC Subsystem

The Network Control Center (NCC) Subsystem allows messages to be sent to and received from

the NCC. This subsystem allows operators to build outgoing NCC messages using def'mitions in

the MAE database.

This subsystem processes incoming NCC messages by parsing parameters and storing the data sys-

tem globals.

8.3.3.6 History Subsystem

The History Subsystem provides logging of mission data to a disk file. This subsystem creates a

single physical file which is in turn divided into logical partitions for each satellite pass or event.

The first block of the file is a directory which includes the starting position of each logical partition.

Page 8-38 Workstation Executives

MAE System Executive Systems

All NASCOM input and output blocks and event messages (including STOL inputs and status mes-

sages) are logged to the history file. This subsystem also allows mission-specific data to be logged

to the history file. It is possible to define six additional types for history logging.

This subsystem provides several functions for maintenance of the history file. These include the

following:

• Printing the history file directory.

• Compressing the file.

• Deleting a logical partition.

• Saving a logical partition to tape.

• Loading a logical partition from tape.

This subsystem does not provide either delog or playback capabilities. These functions must be

provided by mission-specific software. Functions are provided however for reading data from the
file.

8.3.3.7 Library Subsystem

The Library Subsystem provides general-purpose and MAE/mission interface support routines to

the applications programmer. This subsystem consists of four object libraries which provide rou-

tines relating to the following functional areas:

• STOL.

• Events.

• History.

• Buffer pool.

• NCC interface.

• Device management.

• Network Interface Services (NIS) interface.

• Conversion.

• System service.

• Data base.

• File transfer (MODLAN).

8.3.3.8 Database Subsystem

The Database Subsystem allows definition of the different data used by the system. The data base

definitions are contained in normal ASCII files. These raw data base files are input to the MAE

data base generation software, which in turn creates operations data base files. The MAE data base

generation also produces FORTRAN include tides for use in programs. The Database Subsystem

allows definition of the following types of data items:

• System globals - variables required for the system to operate. System globals are set

and modified only by software.

• User globals - mission specific variables. These may be modified by STOL directives.

• NCC messages - definitions of all incoming and outgoing messages.

Page 8-39 Workstation Executives

HOSC PPS System Executive Systems

MAE STOL operations classes and default assignments - used to perform protection
checks on operator inputs and to assign classes to terminals.

8.3.4 Applicability to the Concept Executive

The MAE system is somewhat dated and therefore does not demonstrate usage of distributed pro-

cessing and workstations. MAE also has a rather static terminal based user interface which is not

useful for the more dynamic interface specified by the Concept Executive. There is also no discus-

sion of how configuration management and security is provided.

The most important point about the MAE system is that it is a true executive. MAE offers an ex-

ample of an executive implementation which includes a basic set of efficient functions which pro-

vide common support for requirements of different systems. The basic MAE system is then ex-

panded to support the mission-specific requirements of each spacecraft. MAE provides an exam-

ple of what is and is not considered within the scope of the executive. This functional scope can
be applied to the Concept Executive.

Another interesting feature of MAE is the STOL language. This language completely replaces the

native command line interface. All command level user interaction is input via STOL directives.

Use of STOL provides an example of a custom language used to effectively support a control cen-

ter environment. STOL is effective enough in fact that it will retained for use in the new TPOCC

system described in a previous section.

Despite the example of the STOL language, the Concept Executive will specify use of the native
command line interface.

8.4 HOSC PPS System

The Huntsville Operations Support Center (HOSC) Peripheral Processor System (PPS) uses a dis-

tributed processing concept to accommodate a wide range of Marshall Space Flight Center

(MSFC) project requirements. The system's central processors and peripheral processors receive,

process, and display the data necessary to conduct and control a payload mission.

8.4.1 Contact Point

Science and Engineering Directorate

Marshall Space Flight Center

8.4.2 Review Process

The review process for the HOSC PPS system involved examination of the following documents:

• HOSC Peripheral Processor System Overview, Volume I.

• HOSC Genetic Peripheral Processor System User's Guide, Volume III: Display Utili-
ties.

• HOSC Generic Peripheral Processor System User's Guide, Volume IV: User Special
Computations.

• HOSC Genetic Peripheral Processor System User's Guide, Volume V: On-Line Pro-

cessing.

• MSFC Payload Operations Control Center Telemetry and Command Data Base Defi-
nition.

• MSFC Payload Operations Control Center (POCC) Capabilities Document.

Page 8-40 Workstation Executives

HOSC PPS System Executive Systems

Because the HOSC PPS is a system within the MSFC Payload Operations Control Center (POCC),

SwRI reviewed the latter two documents to gain an understanding of the environment in which the

PPS operates.

8.4.3 System Description

A major objective of the HOSC PPS is to provide a general purpose system useful to support mul-

tiple MSFC projects. The system provides a standard set of services designed and implemented

specifically to allow the shared use of HOSC capabilities. The PPS is a general purpose, distrib-

uted processing system for processing and display of spacecraft telemetry and command data.

8.4.3.1 Operating Environment

The PPS is a part of the MSFC POCC. The POCC is an element of the Huntsville Operations Sup-

port Center (HOSC), and contains facilities and system resources to allow a payload user to mon-

itor and control a payload/experiment during flight operations, preflight tests, verification, and

simulations. The POCC provides resources which allow the user to:

• Monitor experiment functions and activities using down-linked digital, video, voice,

and analog data sources.

• Correlate activities with shuttle-related parameters such as attitude and trajectory data.

• Send commands to the payload/experiment.

• Interface with the POCC systems from remote facilities for data stream transmission/

receipt, computer file transfer, pre-mission training/display development, etc.

• Interface with the Mission Control Center (MCC).

• Coordinate with other operational personnel intemal/extemal to the POCC.

• Interface with mission planning and other analysis computers external to the POCC.

The POCC is composed of the following major subsystems:

• Facilities - This includes the physical resources and utilities needed for preflight and

flight support of a payload mission.

• Digital Data System - The digital data system provides the capability for reception, re-

cording, processing, and distribution of digital data streams with the POCC. The digital

data system includes the data acquisition and distribution system (DADS) and the pe-

ripheral processor system (PPS). These two systems provide the following capabilities:

External interfaces to the POCC data systems.

Receipt and transmission of digital data streams.

Processing of the Spacelab High-Rate Multiplexer data stream.

Recording and distribution of independent payload data streams (IPDS) and direct access channels
(DACH).

Pre-processing and recording of the Orbiter operational downlink (OD) telemetry data stream.

Acquisition and distribution of input telemetry and non-telemetry data for monitoring by POCC
users.

Definition, modification, and maintenance of displays.

Definition, modification, and maintenance of user special computations.

Display of data, update of forms, and execution of commands for uplink.

Page 8-41 Workstation Executives

HOSC PPS System Executive Systems

File transfer among the PPS processors.

Capability to uplink commands to payloads or experiments.

Common use computations on downlink OD telemetry and user supplied mission planning data
to generate displays distributed throughout the POCC.

Receipt of trajectory, attitude, and state vector information from the MCC.

• Voice System - The voice system provides communications internal and external to the

POCC including the capability to communicate with the payload crew onboard the Or-

biter.

• Video System - The video system provides distribution and recording of downlink vid-
eo from the Orbiter and from various other sources internal and external to the POCC.

• Analog System - The analog system provides distribution of downlink analog data from

the Orbiter to user experimenter ground support equipment (EGSE) in the POCC.

• Timing System - The timing system provides distribution of timing in the POCC in-

cluding distribution to user EGSE.

8.4.3.2 Hardware

The primary data system elements of the HOSC PPS are the central processors, peripheral proces-

sors, and user terminal devices. The central and peripheral processors are linked by an Ethernet

local area network (LAN). The central processor is linked to external systems including the POCC

Data Acquisition/Distribution System by the POCC Data Distribution Switch.

The peripheral processor system (PPS) includes processors designated as central processors (CP)

and peripheral processors (PP). The central processor receives and stores the data and supplies it

to the peripheral processor user upon request. The peripheral processor performs data conversions,

user special computations, and display generation.

8.4.3.2.1 External Interfaces

The HOSC PPS receives telemetry data and transmits command and ancillary data through the

POCC Data Distribution Switch. The PPS also interfaces with the High Data Rate System (HDRS)

which provides the capability to record, process, and route data streams down-linked to the POCC
via the POCC Data Distribution Switch. The HDRS receives real-time down-linked data from the

NASCOM system including Spacelab High Rate Multiplexer Data, Direct Access Channels, and

Independent Payload Data Streams.

8.4.3.2.2 Central Processor

The main functions of the Central Processor System are to:

• Receive, log, and distribute telemetry measurements upon request.

• Perform common use computations on incoming data that are of interest to multiple us-

ers.

• Maintain a near real-time data base of up to 24 hours of data stored on disk.

• Provide data transmission services.

• Log data transactions.

• Maintain the telemetry reference data base.

Page 8-42 Workstation Executives

HOSC PPS System Executive Systems

The central processor (CP) acquires and stores telemetry and ancillary data in main memory buff-

ers for real-time access. This data is accessed in servicing requests for the PP's and in executing

common use computations.

Data is validated upon receipt, logged by the system, and made available for display through the

peripheral processors. The data is decommutated through the use of the reference data base and

distributed on a parameter basis to the peripheral processors. Parameters are also decommutated

and provided to a strip chart PP for output to strip chart recorders.

Common use computations (CUC) are performed on the input data. These CUC's provide special

processing functions not available through standard conversion yet of general interest.

Exception monitoring is a CUC that performs limit/expected state sensing on specially identified

parameters. The command history delog CUC generates command delog reports from command

records logged to the CP composite system log. These and other CUC's are performed on the CP

to log and validate data received.

The CP provides users with the capability to recall and process near real-time data. The CP also

transmits data to the PP's for user display and processing. Parameters are provided to the strip

chart recorder PP by the CP. The CP also provides up to four real-time and four playback experi-

menter ground support equipment (EGSE) subsets to user EGSE.

The CP also maintains a system log which is a composite recording of significant events created

during operation. This log includes POCC commands, exception monitoring advisories, and other

system advisories.

The central processor computer systems contain the following hardware components:

• Perkin Elmer 3280 processor.

• OS/32 Operating System V6.1.

• FORTRAN 77.

• Four megabytes of memory.

• Line Printer.

• Two 300 megabyte disks.

• Three 600 megabyte disks.

• Two 1600 BPI tape drives.

• Four 6250 BPI tape drives.

8.4.3.2.3 Peripheral Processors

The peripheral processor provides the user interface for building displays and special computa-

tions; for viewing commands, telemetry, and status information; and for modifying and up-linking
commands. Two modes are available to the user:

• Off-line mode to generate or modify/maintain user-built displays and special computa-
tions.

• On-line mode used to process and view telemetry data, and to modify and execute com-
mands.

There are three functional types of peripheral processors within the PPS: the command/display PP,

the strip chart PP, and the user PP's.

Page 8-43 Workstation Executives

HOSC PPS System Executive Systems

The command/display PP provides the following storage and control functions for the PPS:

• Centralized storage of system and user directories which contain displays, command

forms and user special computations.

• Centralized storage for the command data base.

• Magnetic tape drive for transporting tapes between compatible systems and for backup

of system and user directories for permanent storage.

• High speed line printer for printing NRT reports and tabular formatted displays and

command forms.

The hardware complement for the command/display PP includes the following:

• VAX 8250.

• VMS operating system.

• 8 megabytes memory.

• 445 megabytes disk space.

• Floating point accelerator.

• RX 50 dual floppy disk.

• 1 TA81 tape drive.

• 4 work station video display terminals.

• LN03 laser printer with graphics.

The strip chart PP receives data for strip charting from the CP. This processor performs the fol-

lowing functions:

• Receives and processes data for strip chart recording.

• Provides a five-step calibration output to the strip chart recorder in response to user re-

quests.

The hardware complement for the strip chart PP includes the following:

• VAX 11/730.

• VMS operating system.

• FORTRAN 77.

• 3 megabytes memory.

• RA80 disk.

• 2 TU80 tape drives.

• RX02 floppy disk.

• B 1000 data products printer.

• 4 work station video display terminals.

• 64 channel digital to analog convener.

• Eight 8-channel strip chart recorders.

Page 8-44 Workstation Executives

HOSC PPS System Executive Systems

The user PP's are microcomputers that are interfaced to user POCC terminals. The user PP's pro-

vide the following:

• Real-time storage for user displays and special computations for on-line processing op-

erations.

• Storage of updated command forms, display pages, and ground support equipment.

• Relemetry processing functions associated with display requests and user special com-

putation execution.

• Interface with the command/display PP for update of the command data base.

• Interface with the CP for update of the reference telemetry data base.

• Interface with the CP, strip chart PP, and command/display PP for system control and

monitoring.

The hardware complement for the user PP's includes the following:

• Microvax II.

• VMS Operating System.

• 3 megabytes memory.

• 71 megabytes disk space.

• Floating point accelerator.

• 4 work station video display terminals.

• LA210 letter printer with graphics.

8.4.3.3 PPS Users

User accounts to support a specific activity are established on a mission to mission basis and on

predefined peripheral processors (PP). User accounts are established for activities, not for individ-

uals. Specific items throughout the system and support activities are associated with each user.

User accounts provide privacy for the following:

• Uduser defined displays.

• Command update forms.

• User special computations.

• User defined private data.

The general user from the payload community or vehicle systems is assigned a 2 digit numeric code

used for identification. Several unique operation positions are identified for the PP system and

have been assigned alphabetic user ID's to distinguish their special roles:

• PC - Payload Command Control User.

• CC - Configuration Control User.

• HR - High Data Rate System Control User.

• OC - Operations Controller.

A four digit mission ID code is assigned to each mission and combined with the user ID to create

an account ID. Support activities are associated with the mission ID. The software system is then

Page 8-45 Workstation Executives

HOSC PPS System Executive Systems

generated and configured to support each activity. This allows the system to maintain a separate

configuration of mission-specific software, data bases, and common and user special computa-
tions.

8.4.3.3.1 Payload Command Control User

The PC position controls the POCC command uplink functions by enabling/disabling uplink, com-

mands, and users. The PC user may only access payload commands to perform these functions;

however, the PC user may set his user ID to a numeric user ID and have access to commands in

that user account.

8.4.3.3.2 Configuration Control User

The CC user controls the allocation of system resources during support activities. The CC user

controls the exception monitor capability which performs limit/expected state sensing of a limited

number of critical parameters by common use computation residing in a central processor. The CC

user responsibilities also include control over reference data base (RDB) changes, strip chart re-

corder assignments, and writing non-telemetry data to the central processor.

8.4.3.3.3 High Data Rate System Control User

The HR user controls the capability of a user to send commands to the HDRS. The HR user may:

• Enable or disable HDRS command transmission for all users or a specific user.

• Enable or disable checking of the hardware allocation table when commands are sent
to the HDRS.

8.4.3.3.4 Operations Controller User

The OC user may set his user ID to a legal numeric user ID and have access to commands in that
user account.

8.4.3.3.5 User Access

The user may gain access to the peripheral processor only at the times the account is enabled. The

user is limited to input as specified by the software, such as entry selections that are menu defined.

Escape to the operating system is prohibited. When the user selects the Exit entry from the menu,

the session is terminated and the user is logged off the system.

8.4.3.4 Reference Data Base

The PPS maintains reference databases which contain telemetry data, command information and

special parameters.

The telemetry reference data base is maintained on the central processor and contains the processed

result of the telemetry file from the mission manager's data tape. This information satisfies three

functional requirements:

• Retrieval for display, editing, and replacement of parameter information.

• Retrieval for display of telemetry and pseudo-telemetry data.

• Updating of pseudo-telemetry data items.

The telemetry data base report includes the measurement stimulation identification (MSID), a de-

scription, engineering units, calibration information, data type and length, and the user ID. Other

reports available upon request to the configuration control user contain information specific to

Page 8-46 Workstation Executives

HOSC PPS System Executive Systems

• The strip chart recorders.

• The experimenter ground support equipment (EGSE).

• Exception monitors.

The command reference data base resides on the POCC Command and Display System which is a

peripheral processor within the PPS. This data base contains the commands associated with each
user account. Users develop and maintain command chains to support mission activity. A com-

plete list of all commands and their pertinent specifications provided by the mission manager are

stored in the command reference data base.

The command processing software generates data base reports which support the command activ-

ity of the general user. Information provided to the configuration control user includes:

• A listing of command mnemonic names sorted by user ID and how many each user ID
has.

• A report of mnemonic name compilation process.

• A report of the shell array compilation process which contains the mnemonic name and
the number of data cards.

• A decoded formatted list of real-time storage array data from the compilation process

of the modifiable and/or non-modifiable commands.

Selected parameters are identified in the data base for specific processes including exception mon-

itoring, strip chart recording, and the experimenter ground support equipment. System status pa-

rameters which reflect the configuration and status of the PPS are also included in the data base.

8.4.3.5 PPS Functions

The peripheral processor software is the user interface for building displays and special computa-

tions; for viewing commands, telemetry, and status information; and for modifying and up-linking

commands. The peripheral processor software includes the following subsystems:

• On-Line Processing.

• Display Generation/Modification.

• User Special Computation Utilities.

The peripheral processor software also provides the capability to initiate commands to experiments

and Spacelab payloads onboard the Orbiter. Commands are validated by the PPS and transmitted

to MCC which provides a command acceptance pattern back to the POCC. After validation at the
MCC, the commands are transmitted to the Orbiter. Control provided by the command processing

software includes:

• Capability to enable/disable any user or the system.

• Command safing for critical commands.

• Tracking of command activity of each user and the total system.

• Capability to decode, monitor, and route response messages from Mission Control Cen-

ter.

Page 8-47 Workstation Executives

HOSC PPS System Executive Systems

8.4.3.5.1 On-Line Processing

The on-line processing mode provides the access to mission data from the CP through the LAN.

This is the operational mode for active mission and test support. It provides the capability to view

data on user-built displays or system-provided displays. In this mode a display is on the screen at

all times.

Software to support on-line processing functions executes in both the CP and the PP. All user-spe-

cific processing such as engineering unit conversion, limit sensing, NRT report generation, com-

mand modification, user special computations, conversion and formatting for displays is per-

formed in the PP.

The on-line processing software allows the user to view data on displays that he has built or that

axe provided by the system. Data items axe referenced by MSID. The user may also view com-

mand status information and uplink commands which are enabled. Streams of data are provided

to the peripheral process by the central processor and axe available in four modes:

• Real Time - users can look at data as it is coming into the POCC simultaneously with

the receipt of the data.

• Near Real Time - users request time slices from data stored on disk; up to 24 hours of

data are available on disk.

• Playback 1 - users look at data from a high data rate recorder/payload recorder dump.

• Playback 2 - users may make a request for playback of a previously recorded time slice
of data.

The display layout includes a scratch-pad line from which the user may communicate with the on-

line processing software using predefined instructions or directives. Limit sensing is performed by

the peripheral processor on a display basis and only for the values displayed. The user defines

warning and red-line limits at the time the display is built.

8.4.3.5.2 Display Generation/Modification

Display generation utilities are provided to the user to build and maintain free form displays during

the mission activity period, share those displays with other users, and view the displays in an on-

line operation. The following functions axe provided by the display utility software:

Build or modify composite file.

Build or modify a display.

Show a directory of files.

Download files from the Command Display System (CDS).

Save files on CDS.

Delete user files.

Store files in shareable library.

Copy local or shareable files.

Rename files.

Show updatable display data pages.

Print display.

Page 8-48 Workstation Executives

HOSC PPS System Executive Systems

The composite edit function enables the user to build files containing composites which are the

building block for schematic displays. Composites consist of one or more objects which may be

colored and/or shaded. An object may be a circle, box, or vector figure. These composites are used

in the display build process.

The display edit function enables the user to define the 24-line display layout. Lines 1, 22, 23, and

24 contain information denoting the status of the PPS and user interaction with the system. These

lines contain the current GMT, current MET, a user defined display title, data mode for the display,

display name, date of last update, space for exception monitoring and user advisories, the scratch-

pad line, and a status line for user inputs.

The user inserts display information in lines 2 through 21. Using graph mode, the user defines

graphs to be plotted on the display. Using the layout mode, the user defines the free form data dis-

played in areas not occupied by graphs. Using the field definition mode, the user specifies the

MSID for each measurement to be displayed or updated.

Using the recall definition mode, the user specifies the contents of recall fields defined in the layout

mode. Up to 80 characters of text may be associated with each recall field. During operations, this

text can be recalled to the scratch-pad line.

These utilities operate in an off-line mode and do not receive data from the central processor. Dis-

play definition capabilities include the following:

• Specification of up to 100 data fields.

• Specification of up to 50 recall fields.

• User definition of lines 2 through 21 of the 24 line display.

• Identification as single shot (display updated only once) or cyclic display.

• Refresh rates between once per second and once per minute for cyclic displays.

8.4.3.5.3 User Special Computation Utilities

The special computation software is used to satisfy telemetry processing situations which require

a computation sequence involving one or more parameters. This software allows the user to create,

maintain, and execute analysis programs needed to perform mission support. Special computa-
tions execute on the peripheral processor and have access to real time or near real time data. Each

computed parameter is available for display.

Special computations axe developed in FORTRAN using the standard DEC editor. In addition to

the standard DEC system services (excluding services to create and delete processes), a library of

support routines is provided. The library routines provide the following capabilities:

• Initialization - The initialization routines are used to create and initialize telemetry,

non-telemetry, and constant data for input to the PP from global common and the CP,

and output to global common and the CP.

• Calibration - The calibration file routines input calibration data for each of the specified

parameters from the calibration data base resident on the CP.

• Engineering Unit/State Code Conversion - The engineering unit/state code conversion

routines provide the capability to convert raw telemetry data into its appropriate data

format. Parameters having line segment or polynomial coefficient type of calibration

Page 8-49 Workstation Executives

HOSC PPS System Executive Systems

are converted into engineering units. Parameters having state code type of calibration

are converted into character descriptors.

• Data Input - The data input routines input the current value of constants and non-telem-

etry parameters from global common and telemetry or non-telemetry parameters from
the CP.

• Data Output - The data output routines output the current value of non-telemetry pa-

rameters from the special computation to global common and the CP.

• VT 100 - The VT 100 routines allow the creation and manipulation of text information

on any terminal operating in VT 100 mode.

• Miscellaneous routines provide various other special computation system capabilities.

The user special computations are compiled and linked by invoking menu options provided by the

PP Special Computation Utilities Menu. This menu also provides access to file maintenance util-

ities and other development tools including the following:

• Directory of Special Computations.

• Move Special Computations to PP (from permanent storage on the Command Display

System).

• PP File Processing:

- Copy.

- Delete.

- Edit.

- Print.

- Purge.

- Rename.

Type.

• Compile Special Computations.

• Link Special Computation.

• Special Computation Form Processing:

Create/modify special computation input forms.

Create/modify special computation output forms.

Eit special computation forms logic file.

Execute special computation forms precompiler.

• Run Special Computation With Display.

• Save Special Computations on Command Display System (permanent storage for spe-

cial computations is maintained on the Command Display System).

• Delete Special Computations from Command Display System (CDS).

The Special Computation Form Processing Software is a type of application generator which pro-

vides an altemative method of developing a special computation. This software is designed to

guide the user throughout the task of creating or modifying a form. Using this software, the user

• Creates an input form which defines the parameters to be input.

• Creates a logic file which defines the basic structure of the special computation.

Page 8-50 Workstation Executives

HOSC PPS System Executive Systems

• Creates an output form to define the computation's output to global common and/or the

CP.

All required inputs by the user are displayed and the user is prompted for input from the keyboard.

If a field definition can be supplied by the software or by reading the data base, the user is not

prompted to supply it.

Permanent storage for user special computations is maintained on the CDS. The routines are

placed in a library and access is controlled via user D/password. User special computations may

be placed in a shared library to provide access to multiple users. When a computation is copied to

the shared library, it is not removed from the user specific library.

8.4.3.6 Configuration Control

Configuration control is maintained via the reference data bases and the following operation posi-

tions:

• PC - Payload Command Control User.

° CC- Configuration control User.

° HR - High Data Rate System Control User.

The commands, displays, and user special computations are stored in the reference data bases on

the CP and the Command/Display PP. The PC, CC, and HR control users enable and disable user

and system capabilities.

Use of command services is controlled by the PC user. This user enables/disables the command

system, a particular user, and individual commands for uplink. The ability to modify commands

is dependent upon the definition of the command in the command data base. Commands may be
defined as follows:

° Predefined commands are totally defined in structure and content and cannot be

changed during support.

• Modifiable commands have a predefined structure but the data content of the command

may be changed during support.

° Variable length modifiable commands are defined during flight.

8.4.4 Applicability to Concept Executive

The PPS incorporates several design concepts which are applicable to the Concept executive.

These concepts and their applicability are discussed within the following framework:

° Configuration control.

• Distributed processing.

• User interface.

The PPS maintains configuration control utilizing several methods. First, special user positions are

defined and assigned areas of responsibility. These users enable/disable system and user capabil-

ities. Second, centralized storage is provided for user developed mission support software. Since

access to this storage is controlled by the special user positions, a second level of control is main-

tained by restricting pre-mission updates and on-line access of the storage. Third, user accounts

are assigned for each mission.

Page 8-51 Workstation Executives

IRAF System Executive Systems

The PPS distributes processing between central processors and peripheral processors. The central

processors receive and store the data and supply it to the peripheral processor. The peripheral pro-

cessor performs data conversions, user special computations, and display generation. Process al-

location between the peripheral processors is further divided between user peripheral processors

(PP), strip chart PP's, and the command/display PP.

The PPS provides the user with display generation utilities to allow the user to develop custom dis-

play layouts for user specific mission support software. In addition to the display layout, the user
defines the information to be displayed including telemetry data, command information, and status

information. This gives the user a considerable level of flexibility and control over the mission

support activity.

However, the PPS does not appear to utilize available standards and seems to be tightly coupled

with its hardware/software platform. The user interface does not utilize existing workstation tech-

nology.

8.5 IRAF System

The IRAF system is a publicly available software system available from the National Optical As-

tronomy Observatories (NOAO). This system is currently in use at a number of commercial and

government sites. The primary users of the IRAF system are astronomers who gather and manip-

ulate images taken from large telescopes. It is currently being used at a number of observatories

and is the primary system used for the Space Telescope project.

IRAF is a large and complex system with well over 100,000 lines of code. It has been publicly

used for several years and runs on a variety of UNIX and VMS-based hosts.

Although designed for astronomers and for image manipulation, the IRAF system has sufficient

capability to support many applications and users. While not a distributed software executive, it

does provide enough functionality from which such a system could be developed. In addition, the

IRAF system provides unique solutions to the problems of portability and high-level language/OS

interfaces. Many of the requirements of a distributed software executive are also met by the func-

tionality inherent in this system.

8.5.1 Contact Point

The IRAF system is distributed by the National Optical Astronomy Observatories. It is publicly

available to interested organizations. To obtain a copy of the software and documentation, contact:

IRAF

National Optical Astronomy Observatories (NOAO)

P.O. Box 26732, Tucson, Arizona, 85726

8.5.2 Review Process

The review process for the IRAF system involved installation and use of the 2.8 version of the soft-

ware on a Sun 4/150 system. In addition, the following documents were reviewed:

• IRAF User Handbook Volume 1A - IRAF System.

• IRAF User Handbook Volume 2B - User's Guides/KPNO Cookbooks.

Page 8-52 Workstation Executives

IRAF System
I

Executive Systems

8.5.3 System Description

The IRAF system was designed to allow users to gather and manipulate image data. It provides all

the necessary functions for a scientist to effectively perform this function. It provides a user inter-

face and large set of applications which are sufficient for the majority of user requirements. In ad-

dition, it provides a high-level programming language and a virtual operating system. This allows

users to develop new applications to support future requirements. By defining a new language and

a portable operating system, it is possible to write applications which are completely portable on

any host. The task of porting the IRAF system involves developing the relatively small set of sup-

port functions which in turn support the virtual operating system.

To describe the IRAF system, it is best to examine it from the top down (from the primary user

interface down to the low-level host-dependent functions). The five basic functional components

(as described in this document) are as follows:

• Command Line (CL) - the command line is an interactive interpreter similar in function

and syntax to the normal UNIX C shell. The CL allows a user to enter commands and

provides a programming language which allows scripts to be developed.

• Applications - an application is a program or script which is normally executed via the

Command Line. Applications include those for system, math, image processing, and
other functions.

• Subset Preprocessor (SPP) - this is a high-level language provided by IRAF. This high-

level language is preprocessed by the IRAF compiler into host FORTRAN, which is

then compiled into an executable application. It is this language that the vast majority

of IRAF applications and functions are written in. Note that IRAF also provides a small
set of C and FORTRAN callable functions.

• Virtual Operating System (VOS) - the VOS is a complete operating system which re-

sides above the host operating system (UNIX or VMS). It provides a complete set of

utilities and functions and allows a programmer to develop applications which are in-

dependent of the underlying host. Note that the VOS itself is written in SPP.

• Host System Interface (HSI) - the HSI is the interface which implements the VOS and

allows execution on the host. This is the only part of the system which is host depen-
dent.

Each of the components described above is similar to a component in a typical UNIX development

environment. Figure 8-6 illustrates this relationship.

Page 8-53 Workstation Executives

IRAF System Executive Systems

IRAF Component Equivalent in UNIX

Command Language C or Boume Shell

IRAF Applications UNIX Commands

Subset Preprocessor C and FORTRAN

Virtual Operating System UNIX and Libraries

Host System Interface N/A

Figure 8-6 Comparison of IRAF to UNIX

In a typical IRAF session, the user will use the CL to execute a variety of processes. A process

may be a CL script, an IRAF application built in the SPP language, or a "foreign" process which is

part of the host operating system. In IRAF, a process is normally grouped into what is called a

"package." A package is simply a collection of tasks which have a similar function, such as system

oriented or image processing. To execute a process from a given package, the user will first load

the package. At this time all processes which are part of the package will be read into what IRAF

calls its "process cache." Once in the cache, a process will execute very quickly as it is already

memory resident. This makes execution of commands much faster, especially small interactive

commands for which initialization is normally the major time concern.

Note that a package physically exists as a UNIX process. Executing tasks from the package con-

sists of loading the package (running the process) and initiating tasks within it (IPC initiation of

functions).

8.5.3.1 The Command Language (CL)

The command language (CL) is the user's interface to the IRAF system. The CL is very similar in
use and function to the familiar UNIX C shell. Some of the features and functions of the CL are

as follows:

• Provides a uniform environment on all host systems.

• Structure for organization and extensibility.

• Menus and extensive on-line help facilities.

• Command syntax similar to UNIX C shell.

• I/O redirection and pipes; aggregate commands.

• Match abbreviations for task and parameter names.

• Local and global parameters, hidden parameters.

• Access to host system; foreign task interface.

• Set editor; command history editor (edt, emacs, vi).

• Job submission (including queuing).

Page 8-54 Workstation Executives

IRAF System Executive Systems

v

• Facility for recording all task invocations.

• Graphics and image display cursor mode facilities.

• Filename facility; unix style pathnames to files.

• Procedures, C style expressions and control constructs.

• Simple escape mechanism for direct access to host commands.

From the CL, the user will select tasks from different packages. Packages are organized and

grouped by function, such as system, image processing, etc. The IRAF CL defines the following

four types of tasks:

• Built-in tasks - these are simple functions which are inherent to the CL itself. These are

similar to intrinsic functions available in the UNIX C and Bourne shells.

• Script tasks - these are tasks written in the command language. They are similar to

UNIX C and Bourne shell scripts.

• Compiled tasks - these are tasks written in a compiled language and executing out of

the process cache. These are most commonly applications written in the SPP program-

ming language.

• Foreign tasks - these are host programs or scripts which are run directly on the host sys-

tem.

The CL is the primary user interface to the IRAF system (just as the C shell is to UNIX). It provides

a great deal of flexibility and is comparable in usability to the UNIX shell. It is beyond the scope

of this document to compare the two environments on a detailed level. Suffice to say that the CL

would be a comfortable environment for either a novice or experienced UNIX user to work.

One feature of note provided by the CL is the ability to set what are called "hidden" parameters.

These task parameters are similar to familiar defaults in UNIX commands (such as whether "rm"

prompts you or "Is" lists "." flies. The CL provides reasonable defaults and allows the user to per-

manently affect the defaults (he may also temporarily override them via the command line). This

is a simple operation in which a field-based screen editor is provided. Note that this is possible in

the UNIX C shell via aliasing., but this method is more cumbersome.

8.5.3.2 Application Software

Application software consists of the various packages which are provided with the IRAF system.

These include system packages and scientific reduction and analysis packages. The large number

of packages and tasks is one feature which makes the IRAF system so powerful. This is similar to

the UNIX system in which it is the large number of commands which actually provide much of the

power of the system.

Some of the different packages and the tasks provided by the IRAF system include the following:

DATAIO - I/O to various types of devices:

- mtexamine - Examine the structure of a magnetic tape.

- rcamera - Convert a Forth/Camera image into an IRAF image.

- reblock - Copy a binary file, optionally reblocking.

- wcardimage - Convert text files to cardimage files.

- pdsread - Convert a PDS image into an IRAF image.

- rcardimage - Convert a cardimage file into a text file.

flits - Convert a FITS image into an IRAF image.

Page 8-55 Workstation Executives

IRAF System Executive Systems

v

IMAGES - Generic image processing functions:

imcopy - Copy an image.

imdelete - Delete an image.

imheader - Print an image header.

imhistogram - Compute image histogram.

IMAGES.TV - Image processing specific to TV:

v - Image display load and control package.

blink - Blink two frames.

display - Load an image or image section into the display.

erase - Erase an image frame.

frame - Select the frame to be displayed.

lumatch - Match the lookup tables of two frames.
monochrome - Select monochrome enhancemenL

pseudocolor - Select pseudocolor enhancement.

rgb - Select true color mode (red, green, and blue frames).

window - Adjust the contrast and dc offset of the current frame.

zoom - Zoom in on the image (change magnification).

LANGUAGE - Functions intrinsic to the Command Language:

access - Test if a file exists.

bye - Exit a task or package.

cache - Cache parameter files, or print the current cache list.

chdir - Change the current working directory.

cl - Execute commands from the standard input.

defpac - Test if a package is defined.

defpar - Test if a parameter is defined.

deftask - Test if a task is defined.

envget - Get the string value of an environment variable.

error - Print error code and message and abort.

fprint - Format and print a line into a parameter.

fscan - Scan a list (formatted input).

history - Print the last few commands entered.

keep - Make recent set, task, etc. declarations permanent.

- kill - Kill a background job.

- lparam - List the parameters of a task.

- mktemp - Make a temporary (unique) file name.

- package - Define a new package, or print the current package names.

- print - Format and print a line on the standard output.

- radix - Print a number in the given radix.

redefine - Redefine a task.

scan - Scan the standard input (formatted input).

service - Service a query from a background job.

set - Set an environment variable, or print environment.

substr - Extract a substring from a string.

task - Define a new task.

unlearn - Restore the default parameters for a task or package.

update - Update a task's parameters (flush to disk).

version - Print the revision date of the CL.

wait - Wait for all background jobs to complete.

Page 8-56 Workstation Executives

IRAF System Executive Systems

LISTS - Functions to process lists of values:

average - Compute the mean and standard deviation of a list.

gcursor - Read the graphics cursor.

imcursor - Read the image display cursor.

table - Format a list of words into a table.

tokens - Break a file up into a stream of tokens.

unique - Delete redundant elements from a list.

words - Break a file up into a stream of words.

PLOT - Generic plotting functions:

- contour - Make a contour plot of an image.

- graph - Graph one or more image sections or lists.

- pcol - Plot a column of an image.

- pcols- Plot the average of a range of image columns.

- prow - Plot a line (row) of an image.

- prows - Plot the average of a range of image lines.

- surface - Make a surface plot of an image.

SOFTOOLS - Software development tools:

- make - Table driven utility for maintaining programs.

- mklib - Make or update a library.

- mkmanpage - Make and edit a new manual page.

- xcompile - Compile and/or link a program.

- yacc - Build an SPP language parser.

SYSTEM - System functions:

- allocate - Allocate a device.

- beep - Beep the terminal.

- bugmail - Print/Post bug reports, complaints, suggestions.
- clear - Clear the terminal screen.

- concatenate - Concatenate a list of files to the standard output.

- copy - Copy a file, or copy a list of files to a directory.

- count - Count the number of lines, words, and characters in a file.

- deallocate - Deallocate a previously allocated device.
- delete - Delete a file.

- devstatus - Print the status of a device (mta, mtb, tty).

- directory - List files in a directory.

- diskspace - Show how much diskspace is available.
- edit - Edit a file.

- files - Expand a file template into a list of files.

- head - Print the first few lines of a file.

- help - Print on-line documentation.

- lprint - Print a file on the line printer device.

- match - Print all lines in a file that match a pattern.

news - Page through the system news file.

page - Page through a file.

pathnames - Expand a file template into a list of OS pathnames.

protect - Protect a file from deletion.
rename - Rename a file.

revisions - Print/Post a revision notice for a package.
rewind - Rewind a device.

Page 8-57 Workstation Executives

IRAF System Executive Systems

sort - Sort a text file.

spy - Show processor status.

- stty - Show/Set terminal characteristics.
- tail - Print the last few lines of a file.

tee - Tee the standard output into a file.

time - Print the current time and date.

type - Type a file on the standard output.

unprotect - Remove delete protection from a file.

• UTILITIES - Miscellaneous utilities:

amass - Compute the amass at a given elevation above the horizon.

ccdtime- Compute time required to observe star of given magnitude.

entab - Replace blanks with tabs and blanks.
lcase - Convert a file to lower case.

precess - Precess a list of astronomical coordinates.

translit - Replace or delete specified characters in a file.
ucase - Convert a file to upper case.

urand - Uniform random number generator.

This long list of applications is only the core set of functions provided by IRAF. It is also not nec-

essarily exhaustive, as there have been updates made to the system. This list does not include the

set of packages provided by the NOAO, which are a set of functions useful for specific astronomy

requirements. There are also a variety of third-party packages available from existing IRAF sites.

The fact that IRAF applications (SPP developed) are fully portable makes it possible to share code

from other locations.

8.5.3.3 The Subset Preprocessor (SPP) Language

The subset preprocessor language is the primary programming interface to the IRAF system. It is

a general purpose language modeled after C, but which is implemented as a FORTRAN preproces-

sor. In other words, the user programs in the SPP language (much like in normal C) then runs the

SPP compiler which translates the SPP code into FORTRAN, which is in turn compiled into exe-

cutable code for the host.

The SPP language most closely resembles C, but includes additional support for more complex

mathematical operations. A good way to obtain a "feel" for the SPP language is to examine a short

program using it. Figure 8-7 presents a program called "page," which is similar to the "more" com-

mand present in UNIX. This program is part of the system package, which provides commonly
used commands.

v

Page 8-58 Workstation Executives

IRAF System Executive Systems

7Copyrigllttc) 19;0 ASSOClat|on o! universities for Kesearcn in Astronomy Inc.

include<fset.h>

PAGE -- Display a text file or files on the standard output (the user

terminal) one screen at a time, pausing after each screen has been filled.

The program is keystroke driven in raw mode, and currently recognizes the

keystrokes defined above.

procedure t_page0

bool

pointer
int

redirin

sp, device, prompt, files

map_cc, clearscreen, first_page

bool clgetb0

intf stati0, clgeti0, btoi0

begin
call smark (sp)

call salloc (device, SZ_FNAME, TY_CHAR)
call salloc (prompt, SZ_FNAME, TY_CHAR)

call salloc (files, SZ LINE, TY_CHAR)

redirin = (fstati (STDIN, F_REDIR) == YES)
if (redirin)

call strcpy (" STDIN", Memc[files], SZ_LINE)
else

call clgstr ("files", Memc[filesl, SZ_LINE)

map_cc = btoi (clgetb ("map_cc"))

clear_screen = btoi (clgetb (" clear_screen"))
first_page = clgeti ("first_page")

call clgstr ("prompt", Memc[prompt], SZ_FNAME)

call clgstr ("device", Memc[device], SZ_FNAME)

call xpagefiles (Memc[files], Memc[devlce], Memc[promptl,

first .page, clear_screen, map_cc)

call sfree (sp)
end

Figure 8-7 Sample SPP Program

As the example shows, the SPP language has a large number of similarities to both C and UNIX,

including similar constructs and function calls.

As with any programming language, it is only as powerful as the available support libraries. In

addition to the functions provided by the virtual operating system itself (similar to UNIX system

calls), the following general-purpose, graphics, and mathematical support libraries are provided:

• bev- Bevington routine package.

° curfit - 1-dimensional curve fitting package.

Page 8-59 Workstation Executives

IRAF System Executive Systems

• deboor - DeBoor spline package.

• GKS - IRAF GKS emulator package.

• surfit - Surface fitting (regular grid) package.

• gsurflt - Surface fitting (irregular grid) package.

• iminterp - Image interpolation package.

• llsq - Lawson's and Hanson's linear least squares package.

• ncar - NCAR graphics (GKS version) package.

• nspp - Old NCAR system plot package.

• xtools - General tools library for SPP applications programs.

The major advantage of the SPP language is that it can be used to write truly portable applications.

The combination of the language, the support libraries, and the underlying virtual operating system

provides a programming environment which is very conducive to development of portable appli-
cations. While the same is possible with UNIX, C (or FORTRAN), and standard support libraries

(X, GKS, etc.), it is much more difficult due to the dependence on correct implementation of stan-

dards and requires programmers to contentiously avoid use of non-standard features.

Since the SPP preprocessor translates SPP into FORTRAN, it can generate the appropriate code

for the given host compiler and use host-specific optimization techniques as necessary.

In addition to the SPP language interface, the IRAF system provides a small subset of C and FOR-

TRAN callable functions. However, the interfaces are incomplete and do not provide full (or even

close) access to the features of the virtual operating system. These interfaces exist to allow large

existing applications access to IRAF data. The design of the IRAF system is such that in order to

develop any significant application, it is necessary to learn the SPP and the virtual operating sys-

tem.

8.5.3.4 Virtual Operating System (VOS)

The virtual operating system provided by the IRAF system is a complete programming environ-

ment. It is similar in concept to the UNIX operating system, in that it provides all the required func-

tionality to develop a variety of applications. The VOS also provides programming functionality

which is useful in scientific environments, such as those requiring image processing, high-level

mathematics, or interactive graphics.

The IRAF VOS describes the functionality provided in several areas. These include the following:

• CLIO - command language I/O (get/put parameters to the CL).

• DBIO - database I/O.

• ETC - exception handling, process control, symbol tables, etc.

• FIO - file I/O.

• FMTIO - formatted I/O (encode/decode, print/scan).

• GIO - graphics I/O (both vector graphics and image display access).

• IMIO - image I/0 (access to bulk data arrays on disk).

• KI - kernel interface (network communications).

• LIBCUNIX - stdio emulation, C binding for the VOS, used by the CL.

Page 8-60 Workstation Executives

IRAF System Executive Systems

• MEMIO - memory management, dynamic memory allocation.

• MTIO - magtape I/O.

• OSB - bit and byte primitives.

• TTY - terminal control.

• VOPS - vector operators (array processing).

It is beyond the scope of this document to examine the details of these functional components. Suf-

rice to say that the VOS is similar in concept and function to the UNIX operating system and is

capable of supporting development of large and complicated applications.

It is important to note that the VOS is not a series of processes which run on top of the UNIX op-

erating system. Rather, the functionality provided by the VOS is ingrained in the executable pro-

gram created via the normal load step. The basic structure of a program is illustrated in Figure 8-8.

Contents of an IRAF Program _

User SPP Language Code

IRAF Application Library Calls
t_

VOS System Calls

Host Interface System

Figure 8-8 Contents of an IRAF Program

The IRAF VOS is entirely written in the SPP language. As such, it is another part of the system

which is entirely portable. This is important as the functionality in the VOS is complex and porting

it to a new system would be difficult if it were implemented in a host-specific language.

8.5.3.5 Host System Interface (HSI)

The host system interface is the interface between the portable components of the IRAF system

(VOS and applications) and the host operating system itself (UNIX or VMS). The HSI contains

ALL of the host-dependent or potentially host-dependent code. When the IRAF system is ported

to a new host, it is the HSI which actually must be ported. Once complete, the entire VOS and all

applications will be completely portable. The HSI consists of the following major components:

• IRAF kernel - consists of a library of approximately 50 FORTRAN callable functions.

These are currently written in C, but may be in any language as long as they are callable

by FORTRAN (necessary due to SPP). The kernel is a small set of functions which pro-

vides host-dependent services for the VOS. This kernel is well-contained and may be

implemented according to specifications without any knowledge of the higher level
software.

Page 8-61 Workstation Executives

IRAF System Executive Systems

"v

• Bootstrap utilities - these are required to compile and maintain the remainder of the

IRAF system. These utilities are required to generate the IRAF system and are there-

fore written in the host language. They consist of the SPP compiler, tape read/write

utilities, YACC (Yet Another Compiler Compiler) utility to build the SPP compiler,

and other functions.

The HSI also includes a number of configuration functions which are used to tailor IRAF to a par-

ticular host or environment. The HSI is fairly small compared to the remainder of the IRAF sys-

tem. Although host-dependent, the code contained is relatively portable, especially across similar

types of operating systems.

8.5.4 Applicability to the Concept Executive

The IRAF system as it currently exists is not directly applicable to the Concept Executive, as it is

not an executive system as defined by this document. However, if the Concept Executive was be-

ing developed from scratch, IRAF could be used as the basis upon which the system could be built.

This is much the same as if the system was built on top of UNIX, using standard system utilities

and functions. While IRAF provides some advantages not found in UNIX, it does not provide

much of the functionality required of a workstation executive. Namely, complete Local Area Net-

work support, configuration management, distributed process control, and other functions.

While not directly applicable to the Concept Executive, the IRAF system nonetheless provides

concepts and insight into solutions to problems. For example, a concern with the Concept Execu-

tive is that it is difficult to justify giving users access to the UNIX shell during operations. As done

in IRAF, a special purpose shell could be developed and used for this purpose. This would allow

any special security requirements to be handled directly by the normal user interface.

Another concern of the Concept Executive is how to insure portabi/ity of all system and user ap-

plication software across different vendor platforms. At the time IRAF was developed, the concept

of standard UNIX (SVID or POSIX), X Windows, GKS, and other standards were either not yet

conceived or only in early stages of development. For a system such as IRAF, portability is a pri-

mary requirement, as it is needed to run on a variety of different systems at different sites. At the

current time, standards have matured to the point where it is possible to write portable code. Using

standard languages, standard UNIX (SVID and later POSIX), X Windows, GKS, and other stan-

dards will allow portable software to be developed.

In any large system, especially a critical system depending heavily on real-time performance, there

will be host-dependent implementations in order to achieve optimum response. A lesson can be

learned from IRAF in that such required functions should be front-ended such that the host-depen-

dent details are shielded from the application (system or user). In this way, only a small portion of

code must be modified in order to port to a new host.

Note that the use of a VOS is not really that unique. If you think about any application in an typical

spacecraft support environment (such as the real-time data manager), you see an application built

on top of host operating system functions. This application in turn provides programmatic (C call-

able functions) and interactive means whereby its functions can be selected and used. In this way,

it is a VOS itself, albeit a very small and specific one. It is also one in which the interfaces ro other

such applications are cumbersome (such as the way data is provided for application computation

or display).

Page 8-62 Workstation Executives

TOAST System Executive Systems

In the same manner, most environments provide a VOS of sorts, however it is in the form of sep-

arate applications which are not well-integrated. Each of these applications provides its own lan-

guage (set of commands) and/or an interactive command builder. A more suitable approach would

be to evaluate the requirements of the environment's users and build a VOS which provides all the

functionality. Next provide a complete language which allows users to exercise the functions on

this VOS. The advantages of this approach are:

• Portability - the VOS functions are fully host-independent. All details are hidden be-

neath the VOS. In actuality, the VOS itself should be almost entirely host-independent.

• Extensibility - It will be simple to add a new function or set of function to the VOS.

• User-friendly - The language will be simple to use and will be consistent for all appli-

cations. It will also be nice to provide a means whereby a program is built interactively.

• Integrated - The entire editing process will be in one environment with all functions and
commands available. The user will not have to move from one editor to another or re-

sult to clumsy interfaces to bring all data together.

Such an environment could be implemented at a level above the Concept Executive, thus providing

a complete system for end user use.

8.6 TOAST System

The Transportable Operations Applications Software Task (TOAST) system was originally con-

ceived by the Flight Dynamics Officers (FDO) at NASA/Johnson Space Center. The system was

developed to provide flight planning, flight training, flight analysis, and flight support in the Mis-
sion Control Center (MCC).

TOAST is a software system which can execute under the Workstation Executive (WEX) environ-

ment on the Trajectory Mission Operations Directorate (MOD), Instrument Pointing System (IPS),

Tactical Air Navigation (TACAN) Subsystem (MITS) Local Area Network (LAN) workstation

complex in the MCC. The TOAST system can also be run in stand-alone mode to support pre-

flight planning and training. It was originally developed on HP-9000 computers. TOAST sup-

ports the following trajectory application areas:

• Flight Dynamics Officer functions.

• Ground Navigation (NAV) functions.

• Onboard Navigation (ONAV) functions.

• Ascent Section functions.

The goals of the TOAST system are to provide the users with the capabilities required to support

a mission in preflight, real time, and postflight modes. The system must support multiple users

simultaneously on one or more machines connected by one or more LANs. The system must sup-

port dual real-time operations (defined as two separate flight and cycle combinations supported si-

multaneously with independent data bases).

The TOAST system provides an integrated set of verified applications which are designed to inter-

face with the MCC data flow available on the LAN. The TOAST system supplies an executive

structure and supported applications for a number of low-speed and high-speed trajectory func-

tions. The executive structure contains the system's controlling logic along with certain standard

services. It includes the following features:

III

Page 8-63 Workstation Executives

TOAST System Executive Systems

• Control of user sign-on and database selection.

• A menu tree for selection of the desired applications and displays.

• Application dispatching, resource loading control, and result storage.

• Logging of user input commands sufficient to reconstruct configuration and computa-

tion histories.

• A checkpoint capability.

8.6.1 Contact Point

The TOAST system was designed by the Orbit Design Section of the Flight Design and Dynamics

Division at NASA/Johnson Space Center. To receive more information on this system contact:

Orbit Design Section

NASA/Johnson Space Center

Houston, TX 77058

8.6.2 Review Process

The review process for the TOAST system involved examination of the following documents:

• TOAST Requirements Document, May 1987.

• TOAST Executive Program Guide, May 1988.

• Implementation Design for TOAST, June 1989.

• TOAST Volume I Executive, Draft, November 1989.

The documents reviewed provided an overview of the TOAST system and a discussion of the soft-

ware design.

8.6.3 System Description

The primary purpose of a system such as TOAST which interfaces with the MITS LAN is for real-

time command and data exchange with the Mission Operations Computer (MOC) and the Near

Real-Time (NRT) data system. The MITS workstation provides supplemental computation and

display capabilities as well as data reformatting and logging to disk or tape. The TOAST system

provides the interface for these capabilities. The Trajectory MITS workstations are connected to

the MITS LAN in order to send commands to and receive data and messages from both the MOC

and the NRT System.

The TOAST system can be operated in a stand-alone mode if the MOC is not supporting the MITS

LAN. In stand-alone mode, users can perform significant off-line analyses, such as planning for

real time support or training exercises. For example, the FDO simulation (SIM) support requires

generating significant amounts of trajectory profile data (state vectors, maneuver targets, etc) based

on the mission plan. The TOAST system uses a unified approach to provide these off-line tools in

a manner consistent with real-time application, thus simplifying operator training requirements.

The TOAST system has an open design allowing for additional applications to be added as needed.

The system adheres to the following guidelines:

• The user interface is designed to be convenient, rapid, and user friendly. Nearly all

TOAST commands are implemented via menu structure and function keys. Exceptions

Page 8-64 Workstation Executives

TOAST System Executive Systems

are clearly noted. A shorthand command input capability is also available. Menus have

logical defaults. Cursor control is by arrow keys.

• Application formulations and capabilities default to MOC requirements. However, ad-

ditional options are available in many cases.

• LAN interfaces are provided via approved interface programs. The workstation soft-

ware design does not preclude sending any valid Manual Entry Device (MED) com-

mands to the MOC from the workstation. NRT commands are also supported.

• Transportability of code is highly desirable. All programming is done in FORTRAN

or C and all hardware and system dependent code is modularized for containment and
is documented.

• The system adheres to all security requirements for NASAJJSC. This includes require-

ments for converting software from the highly classified red machine to the less secure
black machine.

• Initialization files are supported. The user may create unique initialization files for

analysis as well as mission support. Each of the Dual Operations sessions permits the

initial user to select the appropriate initialization file from among those available. Log-

ging on by flight ID alone forces the selection of the approved flight initialization file

for that flight.

• TOAST supports multiple terminals having displays controlled from one keyboard.

The user is also protected from undesired output to his terminal. Conversely, any user

is able to view data from any Session Data Area (SDA), but only the users of a specified

SDA may write to that SDA.

There are thirteen functional areas in the TOAST system. They include:

• Password Program.

• Sign-On and Sign-Off.

• Application Selection Program.

• Session State.

• Command Methods.

• Job Execution.

• Database Manipulation.

• Display.

• Clocks.

• Discrete Digital Driver (DDD).

• Color Scheme.

• Monitoring and Logging.

• Common Library.

8.6.3.1 Password Program

The TOAST Password Program requires the user to enter a UNIX login ID and associated pass-

word. Once the login and password match, TOAST is executed. TOAST uses the UNIX login ID

Page 8-65 Workstation Executives

TOAST System Executive Systems

of each user to determine application and flight access. WEX requires all users to login by flight

control position and does not require unique user identification. The TOAST Password Program

was created to replace the UNIX login removed by WEX. This allows TOAST to restrict user ac-

cess to the system.

The user must enter a valid UNIX login ID and associated password. The login IDs and passwords

are defined in the UNIX configuration file "/etc/passwd." The user is given only three chances to

enter a correct login and password. Once the user has entered a correct login and password,

TOAST is executed.

8.6.3.2 Sign-On and Sign.Off

The TOAST Sign-On Menu provides controlled access to the TOAST system, performs system

status update, Session Data Area (SDA) initialization, and takes the user to the TOAST Application

Selection Program. The user executes TOAST simply by typing "toast<CR>." Before the Sign-

On Menu displays the menu for user inputs, it checks whether or not the user has access to TOAST.

If the user is not authorized for access to TOAST, the sign-on attempt is logged to a file, the user

is notified of the error, and the TOAST process is terminated. Otherwise, TOAST displays the pro-

gram identification - name, version, and date - and brings up the Sign-On menu. The user inputs

the position ID, flight ID, cycle ID, session ID, and the SDA initialization parameters. Each posi-
tion ID within TOAST determines the menu structure for the user that is used by the Application

Selection Program. The flight, cycle, and session IDs determine the SDA and the initialization data

parameters define the source of the SDA data initialization.

Positions must be installed into TOAST by the TOAST administrator since the menu structure and

applications are associated with a particular position. TOAST access is controlled by a configura-

tion managed access file. This file defines the access to position and flight for each TOAST user.

If the file does not exist, all UNIX users have unlimited access to TOAST. If the file does exist,

only those users listed in the file have access to TOAST and the users only have the access defined
in the access file. The file contains the following information for each user:

• User ID - UNIX login ID for each user allowed access to TOAST.

• Position ID - valid position IDs for the user; if no position IDs are given, the user has

access to all installed positions.

• Flight IDs - associated with position IDs; indicate the flights which may be requested

with each position ID; if no flight IDs are given, the user may request any flight.

When an SDA is created, the state of the SDA is defined as "private." This means that no other

user may gain access to the SDA, regardless of the permissions defined in the access file. If the

user wants the same position, flight, cycle, they must specify a different session. A TOAST menu

exists that allows a user in an SDA to change the state of the SDA between "private" and "public."

When an SDA is "public", other users may request access to that SDA and gain access.

The Sign-On Menu will also provide the user with several help keys that display valid parameters

for the input fields. The help keys available are:

• Active Sessions - displays the sessions that are currently active.

• Access - displays the position and flight access for the user.

• Save Areas - displays either the users who have save areas, the save areas for a specified

user, or the data within a given save area for a given user.

Page 8-66 Workstation Executives

TOAST System Executive Systems

• Baseline Data - displays the names of the flight/cycle combinations that have baseline

data available.

Once the user has completed the sign-on menu and selected the [EXECUTE] function key and

TOAST has verified the inputs, the SDA is initialized. After the SDA is initialized, the Application

Selection Processor is started using the menu structure defined by the position ID. An [EXIT]

function key is displayed on the user's main menu and the user's session will continue until this

option is selected.

When the user has selected to exit TOAST, the Sign-Off menu is displayed. The TOAST Sign-Off

menu provides the user with the opportunity to save selected data tables from the SDA before sign-

ing off TOAST. In addition, it performs the inverse functions of the TOAST Sign-On menu.

Where the Sign-On menu performs set-up functions, the Sign-Off menu performs certain wrap-up

functions. The wrap-up functions performed are:

• Clear the position from the SDA - as each position terminates, the SDA files unique to

that position are removed. When the last user for a position exits, the position is cleared

from the SDA.

• Delete the SDA - if this user is the last user on the SDA, the SDA is deleted from the

system.

• Update the TOAST status files - remove the user from the list of users on the SDA. If
the termination of the user also terminates the SDA, remove the SDA from the list of

active sessions.

During sign-off, TOAST will stop all executive functions associated with a user's session, delete
all executive tables, table entries, and files associated with the user, and remove all references to

the user from the executive bookkeeping. If the user has no batch jobs running and if no other user

is using the same data area, the user's data area is cleared. Finally, the log file is updated to reflect

the sign-off, and the user is dropped from TOAST.

From the Sign-Off menu, the user is given the option of saving the session data to permanent me-

dia. The Sign-Off menu displays the contents of the user's SDA and allows the user to save spec-

ified data to a Save Area (SA). The user may save data to an SA as many times as desired. The

data save component is accomplished by using the Database Manipulation Program which is dis-
cussed in a later section. When the user has finished saving data (or chosen not to), he may either

press the [EXIT MENU] key to exit TOAST or press the [TOAST] key to return to TOAST.

8.6.3.3 Application Selection Program

The Application Selection Program (ASP) provides the user with a 3-tiered menu structure that al-

lows the user to select applications to execute. This program is started by the Sign-On Menu pro-

gram after the user's inputs have been verified and the SDA initialized.

The main menu, identified by a user's position, is initially displayed after successful sign-on to

TOAST. Each option on the main menu has an associated sub-menu that is displayed when the

user selects that option. Each sub-menu option, in turn, has an associated user program. When an

option is chosen from the sub-menu, the program associated with that option is invoked. The pro-

grams selected from the sub-menu are the position-specific menu and display programs.

The menus contained within the ASP are choice menus and therefore have no user inputs. These

menus include:

Page 8-67 Workstation Executives

TOAST System Executive Systems

• Main Menu - contains a list of application categories from which to choose. When the

user chooses an option, the corresponding sub-menu will be displayed. If the [EXIT]

option is selected, the Sign-Off menu program is executed.

• Sub-menu - contains a list of user-supplied applications to invoke. When the user

makes a selection, the application is executed. If there is a problem executing the se-

lection, an error message is displayed and the current option is highlighted. Once the

requested application has completed, the sub-menu is redisplayed with the last chosen

option highlighted. Pressing the [EXIT] option causes the main menu to be redisplayed

with the last chosen option highlighted.

8.6.3.4 Session State

The TOAST Session State application allows the user to toggle the state of a TOAST session be-

tween public and private. When a session is public, any number of users may sign on to that ses-

sion. When a session is private, only those users logged into the TOAST session when the state

was set to private can sign on to the session. If another user attempts to sign on to a private session,

a message will appear on the Sign-On menu stating that the session is private and the user will not

be allowed into the session. When a session is created, its default state is private. When the last

user has signed off of the session and batch jobs are left running, the session will remain in the state

it was in when the last user signed off. The TOAST Session State application displays the flight,

cycle, and session that were entered on the Sign-On menu along with the current state of the session

and a scrolling list containing the active users in the TOAST session along with their position IDs

and terminal IDs. The user changes the state of the session by depressing a function key.

8.6.3.5 Command Methods

TOAST has three different means of entering commands - menus, function keys, and the com-

mand line. The menu structure is the primary command method for TOAST. All inputs may be

entered through the menus. The function keys, when not application specific, are used for menu
control. The command line serves as a shorthand alternative to the menus. There are also some

system functions that may be accessed only through the command line. Each of the command

methods occupies a specific part of the CRT display.

There are three levels of menus. The f'n'st level is the main menu whose choices represent a selec-

tion of application categories. For each Level 1 menu option, there is a Level 2 menu containing

all the applications available in that category. The Level 3 menus are the input menus for the in-

dividual application programs. Each time the user calls up an input menu, the default values are

displayed. The first time a menu is used, the TOAST-defined defaults are used. Otherwise, the

default values axe the most recently saved values for that menu. Values for a menu can be saved

by the user by selecting the [EXECUTE] or [SAVE MENU] function key.

The function keys are used for menu control. A function key is pressed to indicate that the user

has finished with a menu, or a portion of a context-dependent menu, and is ready to take some ac-

tion. Each application may also use the function keys.

The TOAST system uses eight standard and "n" non-standard function keys. The functions of the

standard keys can only be accessed through the function keys. The non-standard keys are assigned

escape code sequences. The functions of these keys may be accessed by either the function key

itself or the escape sequence assigned to the key. The executive function keys may be either stan-

dard or non-standard. The use of non-standard function keys is limited to "extra" keys on the key-

Page 8-68 Workstation Executives

TOAST System Executive Systems

board. The label on non-standard function keys should not indicate a function not performed by

that key. Application specific function keys will always be standard keys.

Each menu level has its own set of executive function keys and each level's keys are a superset of

the previous level. If either the executive or an application requires more than four function keys
on a Level 3 menu, f9 can be used to toggle the functions keys, and labels, to an alternate set. The

function keys identified for each level are:

• Menu/Command (Standard) - toggle between menu and command mode.

• Save Menu (Standard) - saves the current menu inputs to a menu file.

• Execute (Standard) - saves the current menu inputs to a menu file and actually causes

the execution of the application associated with the menu.

• Exit Menu (Standard) - exits the current menu and returns to the previous level's menu.

• Clear Menu (Non-Standard) - replaces the current menu defaults with the initial de-

faults.

• Clear Field (Non-Standard) - erases the value of the field at the current cursor location

on the menu.

• Print Screen (Non-Standard) - prints the current contents of the screen to the terminal

printer.

• Alternate Set (Non-Standard) - causes an alternate set of function key definitions to be

used.

The command line is used for system functions and shorthand commands. The system functions

are not available via the menu structure although some of them are available via function keys. The

shorthand commands are all available via the menu structure.

The system functions are menu aborts available at the Level 3 menus. They provide a means of

backing out of a menu without changing the state of the menu defaults. They are available when

the user has toggled to command mode. The available system function commands include:

• (main) - takes the user out of the current menu and back to the main menu.

• (exit) - takes the user out of the current menu and back to the previous level 2 menu.

• (clear) - replaces the current menus defaults with the initial defaults.

When in the command mode, shorthand commands may be used instead of the menus to control

applications. When using the menus, the user must follow the proper menu path to accomplish a

task. When using the shorthand commands, the user may execute any command from anywhere.

There is a one-to-one correspondence between the menu options and the shorthand commands.

In general, the shorthand commands do the following:

• Go to a Level 1, 2, or 3 menu.

• Execute an application.

• Bring up a display.

8.6.3.6 Job Execution

An application is defined as any job run as a result of a Level 3 menu request, or the equivalent

shorthand request. There are three types of applications - processors, displays, and interactive dis-

plays. The definition of each is given below:

Page 8-69 Workstation Executives

TOAST System Executive Systems

• Processor - an application that processes data but which does not generate any screen

output.

• Display - an application which reads data from a table and, with little or no computa-

tions, prints the table on the screen.

• Interactive display - a display that allows the user to change the data displayed after it

has been printed to the screen or that allows the user to manipulate a data table that is

being displayed.

An application is executed in one of two job categories - demand or non-demand. Non-demand

jobs are those jobs that are placed in a common job queue, first in first out (FIFO) style. The jobs

in this queue axe sent to the CPU for execution using a simple scheduling algorithm. This prevents

the applications from overloading the system. Demand jobs, on the other hand, are jobs that need

to be executed immediately. When an application is run as a demand job, it is not placed in the job

queue and the user is not allowed to proceed to another application until the demand job is finished.

Demand jobs include displays, interactive displays, the [EXIT] option on the main menu, status

inquiries, and clock functions. All other applications are run as non-demand jobs.

Non-demand jobs axe further categorized into queued and batch so that there axe essentially three

categories:

° Demand job - a job that runs immediately without going through the job queue.

• Non-demand queued job - a job that goes through the job queue and terminates if the

user signs-off before the job is finished.

• Non-demand batch job - same as queued job except that it runs to completion when a

user signs-off before the job is finished.

8.6.3.7 Database Manipulation Menu

Data in TOAST is organized so that there axe constants, flight data, cycle data, and session data.

This allows dual flight operations. Actually, it allows as many operations as the disk space allows.

Users may be on the same flight/cycle but different sessions, or they may be on the same session.

The constants, flight data, and cycle data axe maintained by the TOAST system manager. Users

are allowed to copy this data into their Session Data Area (SDA) but cannot write to the system

database.

TOAST maintains its own database of information needed to operate and coordinate the user's ac-

tivities. Items like users signed-on, display locations, sessions, job status, and module status axe

recorded. Although the users will use this data, they will have no direct access to it and cannot

write to these areas.

Each user signs-on to one pre-defined session. The flight/cycle and data IDs given by the user de-
termine the user's SDA. Each session has an associated SDA and save area (SA). The user main-

tains these areas through TOAST. A user may read from another SDA or SA, but cannot write to

them. A user also has access to his own SA external to TOAST. The super-user has access to all

SDAs and SAs internal and external to TOAST.

The SDA of a user is defined by flight/cycle ID and data ID. If more than one user gives the same

IDs, then these users have both read and write access to the same SDA. TOAST, itself, insures

data interface table (DIT) integrity, but the users of an SDA must coordinate to insure the integrity

of the entire SDA. Each user is given the option of saving all current DITs to an area outside of

Page 8-70 Workstation Executives

TOAST System Executive Systems

V

the TOAST domain which the user has configuration control over. This can be done anytime dur-

ing a session or at sign-off. The SDA will only be cleared by TOAST when the last user has signed-

off of a session and there are no batch jobs running.

Unless a session was left with batch jobs running, when a user signs-on to TOAST, the SDA is

empty except for flight/cycle data. The user may then load the SDA or proceed to execute appli-

cations to build the required session specific data. Sources of SDA loads include flight constants,

flight data, cycle data, other SDAs, SAs, and removable media. An SDA may be saved/loaded in

its entirety or by individual DITs.

Each application uses specific DITs during execution. Since TOAST allows many applications to

run in parallel, TOAST provides a means to protect a table from simultaneous access by more than

one application. The application locks the table before using it and does not unlock it until the ap-

plication is completely done with the table. This insures that an application accesses a table whose
data is consistent. Coordination of table to table consistency is left to the users.

The TOAST Database Manipulation menu provides the user with the opportunity to save selected

tables from the SDA to a specified SA, to load selected tables from a specified SA to the SDA or

to view the contents of a specified SA. When the database menu is initially displayed, information

about the user's SDA and the contents of the SDA are displayed. The user may request to load data

into the SDA, save data into an SA, or view the contents of an SA. If this application is being used

for the Sign-Off menu, the user may not load data into the SDA. To load from an SA to the SDA,

the user must specify the name of the user whose SA is being used, the name of the SA, and the list
of tables to load. To save data to an SA, the user must specify the name of the SA and the list of

tables to save. When saving to an SA, the user may only save to his own SA.

The Database Manipulation Menu contains three sections:

• Header Section - contains information about the tables being displayed in the table sec-

tion of the menu. It contains:

Position ID of the current user.

Flight and cycle IDs of the tables displayed.

Session name of the tables.

The name of the current user, if an SDA is displayed or the name of the owner, if an SA is dis-

played.

The name of the SA, if the tables are from an SA.

• Table Section - displays the tables. If there are more tables than can be displayed, the

user may scroll through the tables. Each line in the section contains:

The index of the table.

Current status of the table: save (S), existence (D), and classification (C).

The table descriptor, not the filename.

• Data Entry section - allows the user to:

Display the tables in the current SDA.

Display the tables in the specified SA.

Save data from the current SDA to the specified SA.

Load data from the specified SA to the current SDA.

Page 8-71 Workstation Executives

TOAST System Executive Systems
I

8.6.3.8 Display

The TOAST system provides a coordinated mechanism for displaying the results of applications

and the contents of the database. Each user can display the results of his processing on his terminal,

independent of all other users. The display to be viewed is selectable from a set of pre-deffmed for-

mats. These formats mimic analogous MCC displays, to the extent possible, in appearance, param-

eter definitions, etc. Display formats for which no MCC analogs exist are also supported.

After a particular application finishes processing, the output parameters required to generate an as-

sociated display are stored in one or more DITs. A warning message is displayed on the applicable

terminal's screen and sent to the on-line printer whenever a DIT is overwritten by reading from a

file or floppy disk. This message is the user's warning that display data which depends on the over-

written table may be invalid.

Each user can request a display at his terminal based on the data contained in any DIT currently

existing within TOAST. The resulting display contains a message identifying the SDA on which

it is based. However, the application software can only write data into a user's own SDA.

The DITs in each SDA provide sufficient data to the display processing logic to generate any re-

quested display. This data may include all of the display parameters directly, or it may only include

some of the display parameters with the remainder of the parameters derivable from the DIT data,

via computations to be performed within the display generation logic itself.

An error message is output to the requesting terminal if sufficient data cannot be retrieved from the

specified SDA to satisfy a specific display generation request. Unless specifically allowed by the

particular display logic, this error also terminates the display request processing - i.e., no partially

complete display outputs are allowed.

Display generation requests default to the requesting user's SDA as the source for display data.

The user can override the SDA source, but it must be specifically overridden for each request made
based on another SDA.

A display DIT consistency monitoring task checks the compatibility between the displays currently

selected at each of the terminals and the DIT data on which those displays are based. If an update

is made to the DIT data that is driving any currently selected display, the display generation logic

for that terminal is automatically queued to regenerate the display based on the updated DIT.

No default displays result from non-demand applications processing. All displays must be specif-
ically requested by the operator.

Hardcopies made at the terminal include a terminal identifier, the current actual Greenwich Mean

Time (GMT), and the flight/cycle identifier on the resulting hardcopy. Displays may be requested

from the appropriate Level 2 menu, from the global display request menu or from the command

line. Display request operations required by the user are minimized via the command line.

8.6.3.9 Clocks

The TOAST system provides for the display of several time of day clocks and user timers. The

requirements for the clock display logic are terminal specific.

The TOAST clock area occupies the top line of the CRT and will allow the display of four clocks.

The clock area is "windowed" such that it may be seen or placed in the background (invisible) at

the user's discretion. The window defaults to ON (clocks visible) at a user's sign-on.

Page 8-72 Workstation Executives

TOAST System
I I I

Executive Systems

The user may have eight clocks running at any time, but only four clocks may be displayed. Count-

down clocks are indicated by a minus sign preceding the time field while countup clocks use a plus

sign. Two clocks are automatically started after TOAST sign-on. They are:

• SGMT - simulated GMT; default = GMT.

• MET - mission elapsed time; default = SGMT reference.

Clocks continue to operate regardless of other tasks being performed. If data does not exist to drive

a requested clock, the digital time field on the display will be filled with asterisks instead of the

time.

8.6.3.10 Discrete Digital Drivers

The TOAST system provides for the display of several discrete digital driver (DDD) event lights

on the terminal screen. The DDDs on each terminal are driven by the data from the user's SDA

and the format is defined by the user's session ID.

The TOAST DDD area contains 22 fields on lines 22-23 of the CRT. The user may specify the

label to be printed in each DDD field. The DDD area is "windowed" such that it may be seen or

placed in the background (invisible) at the user's discretion. The applications manipulate the

DDDs and may turn on/off any number of them at one time.

The DDD states are updated once every second. The DDDs are not buffered so that state changes

received at a rate of more than once per second will be lost except for the last state before each

update.

8.6.3.11 Color Scheme

The TOAST menus and displays follow a standard color scheme. Display colors are dependent on

the data to be displayed. No data is dependent on the color for meaning. Color is used as a sec-

ondary means of enhancing the display. Inverse video, blinking, and other types of non-color de-

pendent modes of display are used to convey special meanings. This approach insures that the sys-

tem is usable on monochrome displays and allows users who cannot discriminate between colors

to still use the system.

8.6.3.12 Monitoring and Logging

The TOAST system maintains status information concerning most actions that take place (e.g., us-

ers logging on and off, application being executed). In addition, certain messages or data are

logged for future reference. TOAST is a disk-oriented system. The status and logging information

primarily resides in disk f'fles. Displays are available to view this information on a terminal. The

displayed information can be hardcopied at the terminal printer or the system printer. A user may

print/view all or part of the log file. The user can print/view a part of the log file by user, session,

or date, or a combination of these selections. The characteristics of the TOAST logging system are:

• User sessions are logged and a complete history is maintained.

° All warning and error messages are logged.

TOAST traps all system errors that are capable of being trapped, logs the information, and then

performs necessary housekeeping before allowing the faulty process to die.

The user can query the system status for such items as:

° TOAST system status.

Page 8-73 Workstation Executives

TOAST System Executive Systems

List of current users along with their flight/cycle and SDA.

Job history for the requesting user.

Current job status TOAST-wide.

Flight/cycle sets available.

Clock status for the requesting user.

Save Area (SA) or Session Data Area (SDA)contents.

8.6.3.13 Common Libraries

There are eight executive libraries. All of them are used by the Executive. Some are used by ap-

plications, both directly and indirectly. These libraries include:

• Util - contains routines that are independent of TOAST; That means they can be used

outside of TOAST. These functions are small, general routines.

• Exec - contains the lowest level of TOAST routines; They require Lib_Util. These rou-

tines can only be used in TOAST as they use the database structure, Executive data

files, or semaphores.

• Locks - contains the lock routines and associated support routines.

• Logging - contains logging and error handling routines; They are put in the same rou-

tine because the logging function is used in error handling. There are two error han-

dling routines - one for Executive errors and one for application errors.

• Database - used by the Sign-Off menu (main program), the Executive application and

the Database Manipulation Program.

• Submit - contains the job submittal routine; It has its own library to allow for the ex-

pansion of capabilities.

• Interface - is the FORTRAN to C interface library; Not every routine has an interface,

not even every routine used by FORTRAN. Only the routines that need strings have an

interface.

• Test - contains the generic routines for testing the libraries; This is really a library of a

main routine and supporting subroutines. Each library has another specific subroutine

for testing its routines. This program is data driven so each library (module) has a num-

ber of associated data files.

8.6.4 Applicability to the Concept Executive

The TOAST system is applicable to the Concept Executive in that it is a high-level interface be-

tween the user and the underlying system. Overall, the requirements for TOAST are similar to

those of the Concept Executive. The major difference between the requirements of TOAST and

the requirements of a Concept Executive lie in their scope. The TOAST system's scope is more

limited than the Concept Executive in that it was designed to manage the display and manipulation

of only the trajectory data in the MCC. The Concept Executive needs to manage all data and pro-

vide a secure and protected environment for all users of the system. TOAST also provides the tools

for displaying and viewing information, while the Concept Executive should provide the interfaces

to be used by those tools.

Page 8-74 Workstation Executives

SFOC System Executive Systems

A primary requirement for TOAST was to make the interface consistent across all applications.

This requirement is also necessary for the Concept Executive. Any system that has to interact with

a user to perform its function must provide a consistent interface to the users of the system.
TOAST maintains a consistent interface by providing standard function keys which cause the same

result whenever the key is selected. Another requirement for consistency lies in the methods used

to interface with the system commands. TOAST provides the user with a limited number of new

commands which may be initiated through the command line as well as through function keys and

shorthand commands (escape sequences). The use of shorthand commands, such as those used in

TOAST, is an admirable quality for any command interface and should be a consideration in the

requirements for the Concept Executive.

The message logging system provided by TOAST can be seen as a beginning to the security con-

siderations necessary for the Concept Executive. The TOAST logging capability could be used to

audit a user's activity and the activity on a particular system entity.

TOAST provides data protection to the user extensively through the standard UNIX owner and

group permissions. This method of user data protection could also be used by the Concept Exec-

utive. TOAST assigns different data areas depending on the inputs entered by the user at sign-on.

If a user attempts to sign-on to a session with the same data area as another user, TOAST will either

not allow the user to sign-on (if the data area is "private") or will inform the user of the other users

signed-on to the same data area (if the data area is "public"). This method potentially means there

could be high amounts of duplicated data between different data areas. If each data area requires

large amounts of space then it would be inefficient to implement this method of data protection in

the Concept Executive. A modification of this method, using a common area for duplicated data

could be a potential resolution to this problem. In this case, the common area for all data areas

would need to be controlled by a locking mechanism similar to the one used for a "public" data

area.

One of the reasons for TOAST's implementation of data areas, is that it allows for separate oper-

ations in a single flight and it allows multiple users simultaneous access to common data. This is

also a requirement for the Concept Executive, however it appears that the TOAST implementation

would need to be enhanced in order to meet all of the requirements of data protection in the Con-

cept Executive.

Since TOAST runs under the current workstation executive in the MCC, it does not provide any

special configuration management, network, or LAN data acquisition functions.

8.7 SFOC System

The Space Flight Operations Center (SFOC) is a system in use and under development at the Jet

Propulsion Laboratory (JPL). One of the primary responsibilities of the JPL is to provide ground

and scientific processing support for long range planetary exploration spacecraft, such as Voyager,

Magellan, and Galileo. The JPL has been using the Mission Control and Computing Center

(MCCC) to support the different spacecraft under its responsibility. The JPL is in the process of

replacing this dated system with the SFOC system. The SFOC system is a collection of hardware

and software which supports multiple missions and provides the baseline for support of current and

future spacecraft.

When the SFOC project was originally conceived, the scope of the project was to provide full ca-

pability for the new Magellan and Mars Observer missions, and converting the existing Voyager

and Galileo missions to the SFOC environment. All work was to be completed by the end of 1989.

Page 8-75 Workstation Executives

SFOC System Executive Systems

Three factors contributed to a change in this plan. First, the Mars Observer launch date was

changed from 1990 to 1992. Second, funds were not available to develop all SFOC systems during
the 1986, 1987, and 1988 time frame. Only those subsystems required to support Magellan launch

were implemented. Finally, funds were not available nor was the timing appropriate for conversion

of either Voyager or Galileo.

A new plan approved by NASA extends the SFOC project to cover the original scope of work. This

work will be completed as soon as possible in order to completely replace the MCCC and therefore

eliminate the requirement to support two separate control environments. The new project plan is

called the "extended" project plan.

The SFOC as currently implemented consists of a baseline set of subsystems required to support

the Magellan launch in May 1989. This review will concentrate on this implementation, as this

baseline represents the current system and includes the "core" subsystems which most clearly re-

late to the Concept Executive.

8.7.1 Contact Point

Space Flight Operations Center

NASA/Jet Propulsion Laboratory

8.7.2 Review Process

The review process for the SFOC system was complicated by the changes in project scope and the

related efforts to bring all documentation up to date. Most of the documents received had not been

updated for the changes in project scope.

The following set of documents represents the SFOC design plan. The design plan provides the

high-level system guidelines and the level 1, 2, and 3 functional requirements. These documents

were generated in January and February of 1986 and had not been updated to reflect the changes

in project scope. These documents were scanned nonetheless to obtain an overview of the com-

plete SFOC system. The documents reviewed include the following:

• Space Flight Operations Center Design Book - Introduction.

Operations Center Design Book - Guidelines and Constraints.

Operations Center Design Book - JPL Control Center Functional Respon-

• Space Flight

• Space Flight
sibilities.

• Space Flight

• Space Flight

• Space Flight

ments.

• Space Flight

quirements.

• Space Flight

Operations Center

Operations Center

Operations Center

Design Book - SFOC Functional Requirements.

Design Book - SFOC Data Processing Architecture.

Design Book - Flight Operations Subsystems Require-

Operations Center Design Book - Planning and Analysis Subsystems Re-

Operations Center Design Book - SFOC Data System Requirements.

• Space Flight Operations Center Design Book - SFOC Operations Organization.

The next set of documents reviewed was the updated SFOC project plan. These documents pro-

vided a high-level description of the functional makeup of the SFOC system. There was a set of

"plan" level documents which completely describe the SFOC extended project plan (primarily in

Page 8-76 Workstation Executives

SFOC System Executive Systems

terms of procedures and responsibilities). It appears that all other documentation is being updated

to reflect this plan, but as of the date of this review, this process was not yet complete. The "plan"

documents reviewed include the following:

• Space Flight Operations Center Project Plan.

• Space Flight Operations Center Documentation Plan.

The final set of documents reviewed consisted of the level 4 functional requirements for several of

the subsystems present in the baseline SFOC system. As indicated, only those subsystems appli-

cable to executives were reviewed:

• Space Flight Operations Center Workstation Support Environment (WSE) Functional

Requirements.

• Space Flight Operations Center Data Transport System (DTS) Functional Require-

ments.

• Space Flight Operations Center Common Data Access (CDA) Software Specifications

Document.

• Space Flight Operations Center SFOC Monitor and Display (SMC) Functional Re-

quirements.

Ideally, both the functional requirements and software specifications would have been reviewed

for each subsystem. This however was impossible as only the listed documents were provided.

8.7.3 System Description

Development of the SFOC system is a multi-year effort which is intended to develop and bring into

operation an upgraded mission control center. The SFOC system is intended to replace the existing

MCCC system, which relies on outdated, high maintenance cost technology. The SFOC system

will use up to date computing technology to satisfy the requirements of a number of flight projects.

The primary goals of the SFOC system are as follows:

• Provide an innovative, lower cost approach to ground support of planetary exploration

spacecraft.

• Eliminate the requirement for unique ground support hardware and software by sharing

common hardware and baseline software.

The SFOC system achieves these goals by defining a multimission baseline which minimizes the

amount of flight-specific development and resources. The SFOC system is intended to support

multiple flight projects, which are defined as the unique characteristics of a given spacecraft flight,

including hardware, software, data, and support personnel. By providing a flexible baseline sys-

tem, the SFOC allows cost effective support of new flight projects. For each new flight project,

the baseline system is adapted to support the unique requirements. The procedure for baseline ad-

aptation is as follows:

• Provide new parameters for insertion into pre-defined tables.

• Create new display formats.

• Add additional hardware as necessary to support the processing requirements of the

flight project.

• Add new data to the database.

• As a last resort, change or add subsystem software.

Page 8-77 Workstation Executives

SFOC System Executive Systems

V

8.7.3.1 SFOC Guidelines and Constraints

The SFOC system functional requirements and design are affected by a set of guidelines and con-

straints. These guidelines and constraints are presented to provide an overview of the specific

goals of the SFOC system:

• System guidelines and constraints:

Provide hardware and software expandability in order to meet the requirements of new flight

projects.

Provide automation of labor intensive processes.

Allow introduction of new hardware and software technology.

Minimize the number of different types of data processing equipment required for environment

support.

• Fundamental design guidelines and constraints:

Use a Local Area Network (LAN) as a means for communicating among system elements.

Individual SFOC functions will access an integrated database via a Data Base Management Sys-
tem (DBMS).

SFOC functions will be implemented on appropriately sized processors. Most functionality will
be on workstations.

Accommodate local and remote users (scientists at different physical locations).

Provide fault tolerance and safeguard critical mission data.

Use distributed computing utilizing local area network and workstation technologies.

• Design guidelines and constraints:

Use national and international standards for data exchange. Use JPL Information System Stan-
dards, including Standard Format Data Unit (SFDU) for data to be exchanged between the SFOC
and other systems.

Use layered approach to networking as defined by the Open Systems Interconnection (OSI) stan-
dard.

Provide secure access to system processing capabilities and to data stored by the SFOC.

Be designed in a manner which allows testability.

- Maximize use of COTS technology for hardware and software.

- Maximize use of vendor-independent solutions.

- Incorporate use of existing shared computing resources.

• SFOC user guidelines and constraints:

Extensive use of software standards including UNIX, C FORTRAN, X Windows, TCP/IP and
SFDU.

Use Ethernet for communications with goal of migration to Fiber Distributed Data Interface
(FDDI) when feasible.

Use standards for telemetry data packetization and channel coding, telecommand data, and time-
code formats.

- Use data management standards.

- Provide a high-level user command mechanism such as System Test and Operations Language
(STOL) or Transportable Applications Environment (TAE).

- Devote special attention to user interfaces.

Page 8-78 Workstation Executives

SFOC System Executive Systems

8.7.3.2 SFOC Baseline

The starting point for the extended SFOC project plan is the baseline system developed for support

of the Magellan launch. The SFOC baseline consists of 3 core and 7 application software sub-

systems. The core subsystems, which provide the lowest level of common support, include the fol-

lowing:

• Workstation Support Environment Subsystem (WSE) - provides the data processing,

user interface, and display environment in which most SFOC subsystems and applica-

tions are executed.

• Data Transport Subsystem (DTS) - provides data communications and transport servic-

es for SFOC subsystems and computing nodes.

• Common Data Access Subsystem (CDA) - provides access to data storage and retrieval

using Data Base Management System (DBMS) and file management services. This

subsystem provides centralized, implementation dependent data management services

to other subsystems.

The 7 application subsystems, which are developed using functions of the core subsystems, include

the following:

• SFOC Monitor and Control Subsystem (SMC) - monitors performance and provides a

means of controlling the SFOC environment.

• Central Database Subsystem (CDB) - also known as the Mission Operations Database

(MODB), stores, retrieves, catalogs, and archives SFOC data. All data is stored in a

relational database.

• Ground Communications Facility (GCF) Interface Subsystem (GIF) - provides the in-

terface to the Deep Space Network (DSN) and the Interim Simulation Subsystem. The

GIF subsystem captures and routes incoming telemetry and outgoing command data.

External data formats used by the DSN are reformatted into internal structures used by

the SFOC system.

• Telemetry Input Subsystem (TIS) - provides input processing on telemetry frames and

DSN monitor blocks. Telemetry processing includes frame synchronization, decoding

for error correction, synchronous and asynchronous extraction, depacketization, de-

commutation, and channelization.

• Data Monitor and Display (DMD) - provides standard processing and display of telem-

etry and other channelized types of data. This includes real-time, near-real time, and

archived data. Display types include plots, fixed and variable matrices, and lists.

• Digital Television Subsystem (DTV) - generates displays of telemetry and other data
for distribution via the Closed-Circuit Television facility (CCTV).

• Test Workstation (TWS) - provides data stream analysis and troubleshooting capabili-

ties to aid in problem identification and isolation.

The baseline system provides downlink support of low-rate data for the Magellan flight project.

The current downlink data flow is illustrated in Figure 8-9.

Page 8.79 Workstation Executives

SFOC System Executive Systems

GCF User
GIF TIS (MODB) DMD

Control

T
Operations

DTV
CCTV

Figure 8-9 Baseline System Data Flow

The high-rate downlink (high speed telemetry) and uplink (command) functions required for the

Magellan flight project will be provided in later deliveries.

8.7.3.3 Non-Basellne SFOC Subsystems

In addition to the subsystems which make up the SFOC baseline, a number of additional sub-

systems will be developed to provide complete support for Magellan and other flight projects.

These subsystems are described as follows:

• Data Products Subsystem (DPS) - responsible for collecting engineering, ground mon-

itor, and science telemetry data (as well as other ancillary data) for generation of spe-

cific data products for use by science investigators and analysts.

• Data Management Subsystem (DMS) - provides the data storage and retrieval capabil-

ities for the SFOC. Data storage may be local to a node, centralized, or archived.

• External User Access Subsystem (EUA) - provides a means of access to the SFOC sys-

tem for external users. This subsystem will provide access to scientists at physically

remote locations.

• Sequence Subsystem (SEQ) - provides a means of supporting the uplink process. This

subsystem will be used to translate desired spacecraft actions into the necessary com-
mands.

• Command Subsystem (CMD) - provides a reliable, concurrent mechanism for com-

manding multiple spacecraft in the SFOC multimission environment.

• Navigation Support Subsystem (SNAV) - provides multimission support to the space-

craft navigation functions performed by the Flight Project Navigation team (FPNAV)

for each flight project.

• Simulation Subsystem (SIM) - provides a means of simulating the Deep Space Network

(DSN) functions to provide a source for testing of all SFOC subsystems.

• Multimission Image Processing Subsystem (MIPS) - provides a multimission facility

for image processing support to flight projects.

Page 8-80 Workstation Executives

SFOC System Executive Systems

• Engineering Analysis Subsystem (EAS) - provides support for engineering data analy-

sis for multimission and project users.

• Telecommunications Analysis Subsystem (TAS) - provide tools and services that en-

able flight project users to predict telecommunications performance and to compare

predicted performance with actual performance.

• Mission Analysis Subsystem (MAS) - provides tools and services for mission design

and analysis.

• Science Analysis Subsystem (SAS) - provides the capability for evaluation of instru-

ment health and status, first order analysis of scientific data, mission/sequence plan-

ning, and sequence verification prior to command uplink.

• Magellan High Rate Subsystem (MHR) - provides support for the Synthetic Aperture

Radar (SAR) device which will be used to obtain detailed data for the surface of the

planet Venus.

8,7.3.4 SFOC Baseline Subsystems Details

This section will describe in more detail several of the subsystems which make up the SFOC base-

line system. It is beyond the scope of this document to describe each of the 10 subsystems in detail,

therefore, only a selected subset of the subsystems will be reviewed. The subsystems reviewed in-

clude those representing the core functionality and one other system which is considered particu-

larly applicable to the Concept Executive. The subsystems included are as follows:

• Workstation Support Environment Subsystem (WSE).

• Data Transport Subsystem (DTS).

• Common Data Access Subsystem (CDA).

• Data Monitor and Display (DMD).

• SFOC Monitor and Control Subsystem (SMC).

Although not a core subsystem, the SMC subsystem was reviewed due to its role in monitoring and

controlling the operation and configuration of the SFOC environment.

8.7.3.4.1 Workstation Support Environment Subsystem (WSE)

The Workstation Support Environment Subsystem (WSE) will provide a uniform base environ-
ment to the users of all SFOC workstations. The WSE forms the basis for access and interaction

with all workstations in the SFOC environment. The WSE defines the basic functional environ-

ment which allows execution of applications and on some workstations, application development.

To provide the uniform base environment, the WSE will provide the following functions at all

workstations:

• Login verification.

• A common user interface to applications.

• A data retrieval utility (for non real-time data).

• 1Lmited file protection mechanisms to insure data integrity.

• A backup and archiving utility.

• A workstation to workstation file transfer mechanism.

Page 8-81 Workstation Executives

SFOC System Executive Systems
I

• The ability to communicate with other SFOC users.

The WSE will also allow application development on certain workstations. This requires the fol-

lowing additional set of functions:

• A standard application development environment

• A graphics development environment (libraries)

• A window application development environment (libraries)

• Access to high resolution plotters and hard copy devices

• A window manager to create multiple virtual terminals

The WSE is divided into SFOC and vendor supplied software. The following two sections describe

each.

8.7.3.4.1.1 SFOC Supplied Tools

This section describes applications, libraries, and tools provided by the SFOC system (as opposed

to vendor supplied COTS functions).

The WSE will provide a user interface which will be used by all applications. The user interface

will provide the following:

• A command interface, which allows execution of applications, creation and use of mac-

ros (command files), and control of the system. The requirements indicate a command

interpreter with much the same functionality as the UNIX C shell.

• A menu interface, which uses menus to present lists of commands. When a menu item

is selected, the corresponding command is executed.

The WSE will provide a number of stand-alone applications, which once run via the command or

menu interface, may be used without command/menu interaction. The stand-alone applications in-

clude the following:

• A data retriever, which allows the user to make a database query and bring data from
the central database into a local database where the data can be reviewed.

• A display template application, which allows definition of the type and layout of a dis-

play. This application allows users to define the format and data content of displays.

Support is provided for list, matrix, alarm, message, tabular, and plot data types.

• A menu creation/maintenance utility, which allows users to define and modify the
menus described above.

° A Standard Format Data Unit (SFDU) filter, which allows users to filter files of SFDUs

based on keys in the data.

The WSE will provide several libraries of routines required on application development worksta-

tions. The libraries provided include the following:

• Data retrieval routines.

• SFDU filter and metering routines.

° Display template support routines.

° SFOC Monitor and Control Subsystem (SMC) interface routines.

Page 8-82 Workstation Executives

SFOC System Executive Systems

The WSE will provide administrative applications which allow control of the workstation environ-

ment. This includes the following:

• User account maintenance and peripheral support.

• Anomaly reporting for violations and errors.

• Global environment editing.

• Security for files and other objects.

• Control of printers and other shared resources.

• Control of local devices.

8.7.3.4.1.2 Vendor Supplied Tools

The WSE specifies a number of vendor supplied tools which are required on all workstations.

Most of these requirements are satisfied by functions provided by the standard UNIX operating

system.

The WSE provides a number of tools which facilitate LAN or workstation communications. These

include:

• User to user communication on local and remote workstations.

• Internal SFOC mail and bulletin boards.

• An interactive communication facility.

The WSE will provide a program development environment which supports several high level lan-

guages. The program development environment will provide:

• C and FORTRAN 77 compilers.

• C and FORTRAN 77 source level debuggers.

• A source code control system to allow software configuration management.

• Window and graphics development libraries with bindings available in C and FOR-

TRAN.

• A screen oriented text editor.

The WSE will provide a number of miscellaneous tools useful for interactive and general worksta-

tion maintenance use. These include the following:

• Calculators and/or interpreted languages to allow basic mathematical calculations to be

performed without developing an actual program.

• Text manipulation tools.

• Backup and archival tools.

• File transfer tools to allow movement of files from one workstation to another.

• Remote login to other workstations.

• File display utilities.

8.7.3.4.2 Data Transport Subsystem (DTS)

The Data Transport Subsystem (DTS) resides on each node and provides a data communications

interface to other nodes in the SFOC environment. The DTS supports access to both internal and

Page 8-83 Workstation Executives

SFOC System Executive Systems

external users. Internal users are those which are present on SFOC nodes. External users are those

at remote sites which are accessing the SFOC via the External User Access Subsystem (EUA).

The DTS will provide all required hardware and software to allow communications between all

nodes in the SFOC network. The DTS hardware will be based on COTS local area network (LAN)

technology. The DTS software will be based on the Open Systems Interconnection (OSI) model,

will support transparent routing, will support remote user access, and will be functionally identical

on all nodes. It appears that the DTS will use TCP/IP and related protocols for network commu-
nications.

The DTS will provide a set of communication services required by other subsystems. The major

services provided include the following:

• Remote login.

• File transfer.

Common data representation.

Process to process communications, including broadcast, point to point datagrams, vir-

tual circuit, and request-response.

SMC interface.

Each of these communications services will be described in more detail in the following sections.

8.7.3.4.2.1 Remote Login

The DTS will provide a remote login function which allows a user on the local node to establish a

terminal-like session on a remote node. This requires that the requesting user have an account on

the remote node. Once the session is established, it will appear that the user is directly connected
to the remote node.

8.7.3.4.2.2 File Transfer

The DTS will provide a file transfer function which allows files to be exchanged between the local

and remote nodes. The transfer process will honor all user and file permissions and will handle
data differences between nodes.

8.7.3.4.2.3 Common Data Representation

The DTS will provide a common data representation which allows interchange of data between dif-

ferent machines. This function will translate local data into the standard format for subsequent

transmission and will convert standard format to local format for incoming data. This format will

be used for all incoming and outgoing communications. Libraries will be provided for format con-

version for user applications.

8.7.3.4.2.4 Process to Process Communications

The DTS will provide an open-close-send-receive model of process to process communication

(PPC). At open time, the user will be able to select any of the following four types of PPC services:

• Broadcast datagram - a non-guaranteed mechanism for sending a message to any num-

ber of other processes.

• Point to point datagram - a non-guaranteed mechanism for sending a message to any

single process.

Page 8-84 Workstation Executives

SFOC System Executive Systems

• Virtual circuit - a guaranteed mechanism for sending and receiving messages to a single

process.

• Request-response - a guaranteed mechanism for sending a message and receiving a sin-

gle response message (with a single process).

The DTS will provide a means of relating logical names to physical node addresses. These logical

names uniquely define the nodes in the SFOC environment.

All PPC services will be message oriented, in which one message is sent and received at a time.

All PPC services will provide the following modes of I/O:

• Wait-mode IIO - for a read or write operation, control is not returned until the operation

completes.

• Non-suspending I/O- for a read or write operation, control is returned immediately to

indicate success (for write) or if a message was pending (read).

• Asynchronous I/O - for a read or write operation, control is immediately returned and

completion is indicated by receipt of an asynchronous event.

8.7.3.4.2.5 SMC Interface

One of the functions of the SFOC Monitor and Control Subsystem (SMC) is to monitor the status

of the SFOC network. The DTS will provide the SMC with enough information to allow the status

and load of the network to be analyzed in near-real time. This information will allow analysis of

different traffic types (virtual circuit, datagram) and of traffic between specific end points. The

DTS will also allow the SMC to enable and disable connections to any node in the SFOC network.

8.7.3.4.3 Common Data Access Subsystem (CDA)

The Common Data Access Subsystem (CDA) provides other SFOC subsystems with a collection

of capabilities to aid in the storage, retrieval, and manipulation of SFOC multimission data. The

CDA will aUow expansion of the SFOC system data requirements without affecting the operation

of existing flight projects. The CDA will isolate vendor-specific data management interfaces from

applications, thereby allowing the underlying software to change without requiring modifications

to applications.

The CDA provides data access capabilities via a set of libraries and interactive utilities. Each is

described in more detail in the following sections.

8.7.3.4.3.1 Data Access Libraries

The Data Access Libraries provide a programmatic means of accessing mission data in the follow-

ing four manners:

• Data Base Management System (DBMS) - allows query access to data in a Relational

Data Base Management System. This includes execution of Standard Query Language

(SQL) commands.

• The Byte Stream Record I/O - allows access to data in a byte-oriented (traditional

UNIX) manner.

• The Spooler I/O file system (JPL unique) - allows extremely fast access to variable

length SFDU records. A spooler file is conceptually the same as a circular queue.

Page 8-85 Workstation Executives

SFOC System Executive Systems

• The Record Index Access Method or keyed access method - allows record oriented pro-

cessing for variable and fixed length records. This includes sequential and indexed ac-

cess.

The Data Access Libraries allow use of all access methods for both local and remote access to data.

In the instance of local use, access is directly through library functions. For the more common in-

stance of remote access, the DTS subsystem is used to establish a virtual circuit with the CDA. The

local application will then connect with the appropriate session manager on the remote CDA node.

A different session manager will exist for each of the four methods of data access. Once the con-

nection is established, commands and data are exchanged between the local application and the

session manager. The session manager accesses requested data by making the appropriate library
calls. This combination of local and remote capabilities allows applications to access data in a

manner which is indepdenent of its location.

All access to data will be through standard interfaces. This simplifies program maintenance, en-

hances program portability, reduces software development efforts, and allows for the separation of

programming skills.

For each of the four access methods provided by the CDA, the following features are supported:

• Walt, non-suspending, and asynchronous modes - provide different modes of data ac-

cess. These modes correspond to those described for process to process communication

for the DTS subsystem.

• Data location independence - allows applications to be independent of where the ac-

cessed data is actually stored.

• Implementation independence - allows applications to be independent of the machine

they are running on.

• Security - provides the protection from unauthorized users accessing and/or updating

data.

• Concurrent access - allows multiple users to simultaneously access data.

• User exits - allows execution of a user function on the data node before the data is ac-

tually saved or returned across the network.

• SFOC Monitor and Control support - allows the SMC subsystem to monitor perfor-

mance of data access and to regulate access to data.

The CDA also provides catalog services in which the user can determine the location and contents
of information on the local node and in the network. Both local and central catalogs are supported.

The central catalog is present in the Central Database Subsystem (CDB). This catalog may be que-

ried to obtain the location of all data in the system.

8.7.3.4.3.2 Utilities

Utilities are stand-alone functions which directly provide services to the user. Utilities allow data

access without requiring program development. Most utilities are executed from the command

line, while a few others may be invoked from applications. The utilities provided include:

• Backup/recovery utilities - used to create a backup of a file to a secondary device. Also

allows restoration of previously saved files.

Page 8-86 Workstation Executives

SFOC System Executive Systems

• Byte stream access utilities - provides users with an interactive facility to access files

in a byte-oriented manner.

• Record access utilities - provides users with an interactive facility for accessing files in
a record oriented manner.

• Spooler utilities - provides users with an interactive facility to access spooler files.

• Data item access utilities - provides users with an interactive facility to perform typical

operations on a database file.

• Catalog utilities - provides users with the ability to review and update the local catalog.

This utility does not allow update of the central catalog.

8.7.3.4.4 SFOC Monitor and Control Subsystem (SMC)

The SFOC Monitor and Control Subsystem (SMC) is the central point for system monitor and con-

trol functions. The SMC will monitor the TIS, CMD, EUA, GIF, CDA, CDB, DTS, and DTV sub-

systems. The SMC will control the TIS, CMD, EUA, GIF, CDB, DTS, and DTV subsystems. The

listed subsystems are involved in the critical downlink and uplink data paths. These data paths con-

sist of subsystems, nodes and data flows which axe configured and controlled by the SMC sub-

system. This control is necessary to insure optimal performance and to allow corrective actions to

be taken when problems arise.

The SMC provides a number of monitor and control functions. These functions are summarized

in Figure 8-10.

Page 8-87 Workstation Executives

SFOC System Executive Systems

Operator

Status I [Control

• Provide Data _ystems operation learn (DSUI) interlace with system

• Provide for anomalous condition detection and alarming

• Provide GIF, TIS, SMC, DTV, DTS, CDB, EUA, CMD control capability

• Provide initialization/termination of the controlled subsystems

• Provide for command and command response routing to and from the
controlled subsystems

• Provide for clock synchronization across nodes on the network

• Provide cold/warmstart recovery for SMC

• Provide summary of DSOT actions

• Provide monitor capability for GIF, TIS, SMC, DTV, CDB, DTS, CDA,
CMD, and EUA.

• Provide formatted monitor displays

• Provide a data flow snap capability

StatusT lContro

Figure 8-10 SMC Status/Control Functions

The following two sections describe the monitor and control functions of the SMC in more detail.

8.7.3.4.4.1 SMC Monitor Functions

The SMC monitor functions provide the SMC operator with the ability to identify problems with

the SFOC data flow. Data flows within SFOC consist of the data itself, processing applications,

core subsystems which affect the data flow, the operating system, and the communications net-

work. The SMC monitor functions allow the operator to examine each component of the data flow

in an attempt to isolate the problem. The SMC monitor functions are divided into the following

three functional areas:

• Subsystem monitor - provides monitor information generated by individual sub-

systems. This information allows the SMC operator to determine if the data flow prob-

lem is due to a particular subsystem. The SMC will monitor status, alerts, events, and

snaps (snapshot data samples) generated by individual subsystems.

Page 8-88 Workstation Executives

SFOC System Executive Systems

• System monitor - provides monitor information needed to determine if a data flow

problem is the result of a resource used by one of the SFOC subsystems. This includes

hardware, networks, and operating systems.

• Monitor display - provides a means whereby the SMC operator can view, manipulate,

and interact with the data generated by the subsystem and system monitor functions.

Displays are generated by defining templates which specify the required data and its po-

sition in the display. Display templates may include filters (time and information type)

and logical and relational operators.

8.7.3.4.4.2 SMC Control Functions

The SMC control functions allow the SMC operator to diagnose data flow problems by enabling

and disabling any of the subsystems under its control. The SMC operator will also be provided the

capability to review and modify the software and hardware configuration which supports the data
flow. The SMC control functions are divided into the following four functional areas:

• Application control - provides the ability to issue control directives to any controlled

application. The directives provided include start, stop, pause, and resume. This allows

restart of failed subsystems and applications. This level of control is available at the

local node and remotely from the central SMC node.

• System control - provides a mechanism to maintain system clock times across all nodes

on the SFOC network that may be used to process data flows controllable by the SMC

operator.

° Control user interface - a single window will be provided for controlling all subsystems,

applications, and nodes. The interface will be consistent with that specified by the

Workstation Support Environment Subsystem (WSE).

• SMC support tools - provides capabilities required to provide effective analysis of the

SFOC system. This includes COTS hardware and software such as LAN analyzers and

operating system tools.

8.7.3.5 SFOC Tasks and Major Deliveries

This section discusses the current SFOC tasks which are ongoing or planned for the extended

project. This information is provided to allow the reader to gain an understanding of the future

directions of the SFOC project. The extended SFOC project plan includes nine distinct develop-

ment tasks. These include the following:

• System Engineering - involves conversion of all subsystem requirements to the extend-

ed project plan and providing planning, engineering, and technical support for all flight

projects.

• Baseline Implementation - involves all tasks for the baseline implementation (this in-

cludes the adaptation to support the Magellan flight project). This task is responsible

for sustaining all SFOC subsystems, adapting subsystems to Magellan, and developing

several new subsystems which are to become part of the baseline. These include the

Command, Simulation, and External User Access subsystems.

• Flight Projects Office Information Systems Testbed (FIST) - represents a prototyping

and evaluation, consulting, and advanced studies group. This group investigates new

technology useful for introduction into the SFOC system.

Page 8-89 Workstation Executives

SFOC System Executive Systems

• Adaptation of the SFOC baseline for Mars Observer - involves Mars Observer adapta-

tion and addition of several new capabilities including an updated Telemetry Input Sub-

system for processing of multimission data, support and transfer of large data volumes,

an external user access subsystem for access to data, stand-alone decommutation for re-

mote users, and support for the sequence database. This flight project will also support

Science Operations Planning Computers (SOPCs) which support data access for the re-

mote science community.

• Conversion for Galileo, Voyager, and Ulysses - represents the adaptation of the base-

line subsystems to transition these flight projects to the SFOC environment.

• Magellan High Rate - represents the task of supporting the Synthetic Aperture Radar

(SAR) device which will be used by Magellan to obtain detailed data for the surface of

the planet Venus. The Magellan High Rate (MHR) subsystem will provide this capa-

bility.

• Uplink Tool Development - this task provides a set of multimission tools to support up-

link communications. This task will support development of sequences which control

the activity of a given spacecraft.

• MIPS Transition to SFOC - this task involves the transition of the Multimission Image

Processing Subsystem (MIPS) into the SFOC environment.

• NAIF/SPICE Development - the Navigation Ancillary Information Facility (NAIl:)

SPICE kernel allows complete processing of geometric and other ancillary data ob-

tained from spacecraft. SPICE is an acronym derived from the first letters of the data

sets for which it allows processing:

Spacecraft ephemeris.

Planet, satellite, or other target body ephemeris and associated physical and cartographic con-

stunts.

- Instrument data.

- C-matrix.

- Events, as in sequence of events.

The SPICE kernel will be integrated into the SFOC environment to allow processing of

these types of data.

The functionality identified by these 9 tasks will be introduced to the SFOC environment via a se-

ries of deliveries. At the current time, two SFOC deliveries have already taken place. Delivery 1

was an internal delivery intended to test the process. Delivery 2 represents the current baseline

SFOC system which was used to support the Magellan launch. The current extended SFOC project

plan covers the following seven additional deliveries:

• Delivery 3 "Galileo Conversion Demonstration" - provides the first demonstration of

the SFOC's multimission capability to support an existing flight project. This delivery

will support basic telemetry processing capability for low-rate engineering and science
data.

• Delivery 4 "Magellan High-Rate (MHR)" - supports processing for the Magellan Syn-

thetic Aperture Radar (SAR) Instrument (the so-called high-rate telemetry processor).

The MHR subsystem will provide support for high-performance processing of the

throughput requirements of the Magellan high-rate system.

Page 8-90 Workstation Executives

SFOC System Executive Systems

• Delivery 5 "Mars Observer Flight Sequence Test Support" - supports the flight se-

quence test for uplink and downlink of Mars Observer. Included are adaptation of the

TIS, GIF, simulation (SIM), and DTV subsystems.

• Delivery 6 "Consolidated Conversion Phase 1" - provides the preliminary capability to

support low-rate engineering processing for Voyager and Galileo in the SFOC environ-

ment.

• Delivery 7 "Completion of Consolidated Conversion" - will comprise the completion

of the conversion of Galileo, Voyager, and Ulysses flight projects to the SFOC envi-

ronment. The command (CMD) and simulation (SIM) multimission subsystems will

also be completed for this delivery.

• Delivery 8 "Mars Observer Launch Ground Data System" - will provide the capabilities

to support Mars Observer launch and operations. Included are final versions of the Se-

quence, Command, and External User Access subsystems, and the Science Operations

Planning Computers (SOPCs).

• Delivery 9 "Mars Observer Encounter Ground Data System" - will provide the capabil-

ities to support the Mars Observer encounter operations.

8.7.4 Applicability to the Concept Executive

It is difficult to apply the SFOC system to the Concept Executive for two reasons. First, all avail-

able documentation for the SFOC system is making the transition to the new project plan. Also, it

was not possible to obtain the detailed software specifications for the core subsystems which are
of the most interest. Second, the SFOC is an extremely large and complex system whose scope is

far beyond that of the Concept Executive.

The SFOC system specifies a baseline which is adapted to support different flight projects. This

is the same basic goal of the Concept Executive, in which the concept provides the basic environ-

ment for different control centers. The SFOC system and the Concept Executive also share many

high-level goals such as expandability, interoperability of hardware and software, and use of COTS

components.

The SFOC system is heavily based on use of workstations in a distributed processing environment.

The Workstation Support Environment (WSE) and the Data Transport Subsystem (DTS) combine

to specify a functional baseline which is similar to that specified by the Concept Executive.

The primary command interface provided by the WSE appears to be the UNIX shell (as opposed

to an environment specific language). This is indicated by the various WSE functional require-

ments which explicitly require UNIX C shell-like functionality.

The SFOC system is dependent on the use of standards, including UNIX, X Windows, C and FOR-

TRAN, and TCP/IP. This is again similar to the Concept Executive, but with less detail devoted

to specification of individual standards. For example, which higher level user interface standards

have been selected (if any).

The Command Data Access Subsystem (CDA) provides an interesting concept which could be ap-

plied to the host systems which provide non-real-time data to Concept Executive applications. A

standard interface which allows multiple access methods to near real-time and archived data would

be useful in the Concept Executive. The Concept Executive specifies a standard data acquisition

process, but it offers less functionality than defined by the SFOC CDA subsystem.

Page 8-91 Workstation Executives

SFOC System Executive Systems

The SFOC Monitor and Control Subsystem is interesting as it provides a centralized manner in

which all workstations, the SFOC network, and applications are monitored and controlled. While

this function may not be useful within the Concept Executive, a system of this type is definitely

required within the different control center environments. An integrated approach to all monitor

and control functions is interesting and may prove more efficient than separate systems for network
and workstation status and control.

The SFOC system does not provide an automated configuration management plan. A configura-
tion management plan is described in one of the "plan" level documents, but is primarily expressed

in terms of procedures and responsibilities.

v

I

Page 8-92 Workstation Executives

TAE System User Interfaces

9.0 User Interfaces

This chapter summarizes two user interface systems available from different organization. The

two systems were reviewed due to their potential usefulness for the Concept Executive. The sys-

tems reviewed (and the sources) include the following:

• Transportable Applications Environment (TAE) - Goddard Space Flight Center.

• Motif- Open Software Foundation (OSF).

Review of each system was obtained by experimenting with the actual software and reviewing the

associated documentation. An on-site demonstration of TAE was also provided. The following

sections describe each system in more detail.

9.1 TAE System

The Transportable Applications Environment (TAE) is a portable User Interface Management Sys-

tem (UIMS) which provides an integrated environment for designing, building, prototyping, and

tailoring an application's User Interface (UI). The TAE also provides effective management of the

UI throughout the application's execution. It was developed by Century Computing, Inc. for

NASA Goddard Space Flight Center. The TAE is a collection of callable subroutines, develop-

ment tools, and run-time libraries that provide and support a consistent user interface for interactive

systems.

At run-time, TAE applications sit between the user and the system application tasks, acting as the

user interface executive by displaying menus, command line prompts, help information, and mes-

sages, and by passing parameters from the user to the applications.

Based on continually refined user requirements, TAE has become a powerful tool for quickly and

easily building consistent, portable user interfaces in an interactive environment. TAE can be used

to generate much of an application system's user interface, resulting in reduced system develop-

ment time. Since a major goal of TAE is consistency, the user interface of an application system

remains consistent from task to task. Also, once a user is familiar with the TAE user interface, us-

ing any system developed under TAE becomes much easier. Finally, since TAE user interfaces are

easy to define and can be completely separate from the application software, rapid prototyping of

the user interface is possible.

TAE comes in two forms. The original TAE, called TAE Classic, uses a standard ASCII terminal.

TAE Plus, which includes TAE Classic, supports modem workstations with a window-based,

mouse and keyboard driven iconic interface. Our review was done on the TAE Plus version. TAE

Plus evolved because of the rapid emergence of sophisticated workstations with high-resolution,

bit-mapped displays. These systems employ multiple windows, graphical icons and objects, color,

and various input devices and techniques to develop intuitive, friendly interfaces that efficiently

display complex information. TAE Plus provides the application developer a method of working

with the modern user interface capabilities made available by the new family of graphic worksta-

tions.

9.1.1 Contact Point

The TAE system is distributed by Century Computing, Incorporated for NASA Goddard Space

Flight Center. It is publicly available to interested organizations. To obtain a copy of the software

and documentation, contact:

NASA Goddard Space Flight Center

Page 9-1 Workstation Executives

TAE System User Interfaces

TAE Support Office

Greenbelt, Maryland 20771

9.1.2 Review Process

The review process for the TAE system involved installation and use of the 4.0 version of the soft-

ware on a Sun 3/60 system. In addition, the following documents were reviewed:

• Introduction to TAE.

• Overview of TAE Plus.

• TAE Plus User Interface Developer's Guide.

9.1.3 System Description

The TAE system provides a suite of integrated tools and software libraries for developing and run-

ning highly interactive, graphical application systems. TAE Plus includes:

• TAE Plus WorkBench.

• Window Programming Tools (WPT).

• TAlE Plus applications executive, TM.

• WPT TAE Command Language (TCL) prototyping commands.

• Facelift, a graphical interface to TM.

TAE Plus is based on the X Window System, Version 11, Release 3 (X11), and on the X Toolkit,

both emerging standards in graphical window-based software. The WPT routines provide a buffer

between an application and the complexities of X11 and the X Toolkit, but an application may also

access the X Toolkit and Xlib directly.

The application code in TAE is generated by the WorkBench and enhanced by the developer. The

generated application will include calls to the WPT library that define and control TAE Plus panels

and interaction objects. The X Toolkit provides the building blocks used by wlyr to define panels

and interaction objects. Xlib defines the X11 graphics primitives and the X11 server provides the

interface and the display hardware.

The TAlE Plus WorkBench is a development tool that supports the interactive design and layout of

graphical, panel, and interaction object-based user interfaces. TAE Plus panels are similar to win-

dows. The TAE Plus interaction objects are display objects, such as buttons, scrolling lists, pull-

down menus, text input fields, and dials, that display information for, and receive information

from, the user.

The Window Programming Tools (WPT), is a package of application-callable routines used to dis-

play and control an application's user interface. Using WPT, an application can create, display,

modify, and delete the graphical attributes of, and receive input from, TAE Plus panels and inter-

action objects.

TAE Plus includes an applications executive called the Terminal Monitor (TM). TM supports an

interpreted command language called the TAE Command Language (TCL), and provides various

executive-type user functions for suites of applications, including session logging, application se-

quencing, and both command line and menu-based user modes.

A set of TCL commands, called WPT TCL commands, mirror the graphical WPT routines de-

scribed above. These commands allow a developer to create graphical TAE Plus applications us-

Page 9-2 Workstation Executives

TAE System User Interfaces

ing only TCL. Because TCL is interpreted, and thus can be executed without compiling and link-

ing, this capability supports rapid initial prototyping of user interfaces.

The standard menus, help displays, and parameter entry displays of the applications executive, TM,

are typically ASCII-based. However, by enabling the Facelift feature of TM from a graphics ter-
minal, these standard displays are "facelifted" with a graphical look and feel that is consistent with

TAE Plus WPT-based applications. This enables development of a user interface that will operate

on ASCII-based terminals and/or graphics workstations.

9.1.3.1 User Environment

The TAE Plus user interface has four categories of interface elements:

• Panels (windows).

• Interaction objects.

• Command line.

• Formatted screens: menu, parameter, and help.

TAE Plus offers a set of panels (windows) and interaction objects for constructing graphical, inter-

active applications. A panel is a window of information to be displayed. It has an optional title

bar. A workspace panel is a special panel for the display of application graphics not supported by

the WPT routines. Data driven objects are available for representing dynamically changing data.

The object type describes the behavior that will be exhibited, e.g., rotation, moving, stretching.

The images used for these objects may be defined by the designer using a graphic editor accessible

through the WorkBench. After drawing the images, the designer names the dynamic and static

background portions and describes information needed for the behavior of the object, such as range

of movement.

TAE Plus provides a command line interface through the TAE Command Language (TCL). The

command line mode allows an end user to interactively enter TCL commands that are interpreted

by the Applications Executive (TM).

A set of standard screens -- menu, tutor, and help -- are available for alphanumeric terminals and

graphics workstations when running with TM. A menu is a display containing a set of choices,

each of which corresponds to another menu or a TCL command to be executed. Tutor mode assists

the user in specifying the parameters for an application. For each parameter, the tutor display pre-

sents the parameter name, some descriptive text, and the current value, if one exists. A help screen

is always available and there is a standard display format for the help text.

9.1.3.2 Development Environment

TAE Plus offers an interactive graphical environment for creating applications, where the interface

construction is separated from the application logic. This separation makes it possible to do itera-

tive changes to the interface without changing the application code. The TAE Plus developer's en-

vironment consists of a powerful interactive graphical WorkBench and facilities for rapid proto-

typing and generating skeletal code for an application in several languages.

At development time, the developer interacts with TAE Plus WorkBench to create a user interface.

Using the WorkBench, the developer creates a resource file and application code. The resource

file includes the definitions of the panel and item attributes that make up the interface. The appli-

cation code includes logic to open the resource file at run-time, extract the panel and item at-

tributes, and display them as required.

Page 9-3 Workstation Executives

TAE System User Interfaces

The TAE Plus WorkBench is the primary tool of the development environment. Through the

WorkBench an interface designer can compose an interface from interaction objects, the basic

building blocks for an interface. The designer can create, size, move, and connect objects and

change their attributes. When the interface design is saved, a resource file is created that describes

the interaction objects and connections in the interface.

Developing a user interface is typically an iterative process. Once a user interface has been initially

created and stored in a resource file, the WorkBench can read in that resource file and the user in-

terface can be modified and saved again in an updated resource file. These modifications can often

be made without changes to the application program.

9.1.3.2.1 WorkBench

The main component of TAE Plus is the "WorkBench" which is an application development tool

that supports the interactive definition and layout of sophisticated user interfaces. The WorkBench

allows an application developer to interactively construct the look and feel of an application screen

by arranging and manipulating interaction objects. The interface to the WorkBench allows both

programmers and non-programmers to easily design complex user interfaces.

The WorkBench allows a developer to build an interface as if it were composed from a construction

set of components that have visual attributes such as color, font, size, and location which can be

tailored. The basic building blocks for developing an application's user interface are a set of inter-

action objects. All visually distinct elements of a display that are created and managed using TAE

Plus are considered to be interaction objects. There are three categories of interaction objects with-

in TAE: user-entry objects, information objects, and data-driven objects. User-entry objects which

are mechanisms by which an application can acquire information and directives from the end user.

Information objects which are used by an application to instruct or notify the user. Data-driven

objects which are vector-drawn graphic objects which have been "connected" to an application data

variable, and elements of their view change as the data values change.

Functionally, the WorkBench allows a user interface developer to dynamically lay out an applica-

tion screen, defining its static and dynamic areas. From within the WorkBench, a developer can:

• Define, position, re-size, move, copy, and set the display attributes and default values

of interaction objects and panels.

• Define user interface connections that connect the user selection of an interaction ob-

ject, such as a button, with the deletion of that button's panel and/or the display of an-

other panel.

• Use a bitmap editor to create graphical icons.

• Draw the images for data driven objects.

• Immediately apply the changes to the look of any item.

• Undo the last action.

• Specify when panels will appear and disappear in the application.

• Rehearse the user interface.

• Generate skeletal application code, in either C, Ada, or the TAE Command Language

(TCL), which displays and controls the designed user interface.

Page 9-4 Workstation Executives

TAE System User Interfaces

• Save the user interface separately from the application code (thus enforcing separation

of "form from function") in a TAE Plus resource file.

• Modify an existing user interface, often without any change to the application code.

The general style of interaction when using the WorkBench is one of point and select. WorkBench

panels and the newly created application panels coexist on the display. The WorkBench panels
have a consistent and unobtrusive look so that they are easily distinguishable from the designer's

application panels. Help is associated with every panel in the WorkBench and is accessed by se-

lecting the "?" icon in the upper right comer of the panel.

Once an item is created, it appears on the display and can then be moved or re-sized. The developer

specifies the user interface through menu selection and minimal typing. Whenever possible, func-

tions apply to the currently selected interface object. For instance, a selected object is duplicated

when the copy command is selected; a panel name in a WorkBench panel will be filled in when the

panel is selected.

Most of the panels the designer sees are of three types: the main panel, a specification panel, and

a presentation panel. The main panel provides the top level functions for the WorkBench. It al-
lows the basic file, editing and utility functions through pull-down menus. The file commands in-

clude saving and retrieving files. The edit commands include modifying, aligning, duplicating, and

specifying the initial panel. The utility functions include starting the window manager, opening a

terminal window, generating code, rehearsing the interface, and browsing through a list of the

available fonts.

From the main panel, the WorkBench may be operated in three modes. The first mode, move/re-

size/edit, is the default for the WorkBench. It allows the designer to create and design the applica-

tion panels and items. The second mode is the Set Default Values. This mode allows the designer

to set default values of interaction objects. The third available mode is the Connections mode

which allows the designer to establish an action for each user event.

The specification panels are used to define and modify panel and interaction objects, called items.

The WorkBench contains a panel for specifying panels and items in the user interface. These pan-

els request information which is required to define the object. TAE Plus also offers an optional

help feature which provides a consistent mechanism for supplying application-specific information

about a panel and any interaction items within the panel.

The presentation panels are displayed when the Details button is selected in the Item Specification

Panel. This panel solicits details on the behavior specific to the interaction object selected.

Once a user interface has been developed and tailored, the WorkBench provides a "generate" func-

tion which produces a fully operational and commented body of code which will display and man-

age the entire UI. Currently, source code generation of C, Ada, and TCL is supported, with bind-

ings for Fortran and C++ expected in later TAE Plus releases.

9.1.3.2.2 Window Programming Tools

Once the application's screen has been designed, the WorkBench saves the user interface details

in a resource file. TAE Plus includes runtime services, Window Programming Tools (WPTs),

which are used by application programs to display and control the user interfaces designed with the

WorkBench. The WPT package is a library of application program callable routines that are used
to define and control elements of the TAE Plus user interface. Using WPT routines, applications

can:

Page 9-5 Workstation Executives

TAE System User Interfaces

• Display and erase panels and their associated interaction objects.

• Update the displayed value of an interaction object.

• Reset the value of an interaction object to its initial value.

• Update the presentation attributes of an interaction object.

• Get the next panel-related event.

• Temporarily display a busy cursor.

• Display a message in a "bother box" (i.e., error messages).

WPT applications must run on a graphic workstation that supports the X Window System, Version

11, Release 3. The WPT routines will not execute on ASCII alphanumeric terminals.

9.1.3.2.3 TAE Command Language

In addition to providing the WPT runtime subroutines, TAE Plus also offers control of interaction

objects throughout the interpreted TAE Command Language (TCL). This capability provides an

extremely powerful means to quickly prototype an application's use of TAE Plus interaction ob-

jects and add programming logic without the requirement to compile or link. The TAE Command

Language (TCL) is a procedural prototyping language which is interpreted by the TAE Plus appli-

cations executive, TM.

TCL offers a high-level set of commands used to invoke and manage application functions. Com-

mands can be invoked dynamically during an interactive session or used to build command proce-

dures. The basic unit of execution in TCL is the command string. A TCL command string may be

a TCL built-in command or a procedure invocation. Procedures may contain invocations of other

procedures. The TCL built-in commands include a set of WPT TCL commands that are analogous

to WPT calls and allow for access to the graphic objects in TAE Plus.

The TCL commands are analogous to the WPT routines. As with WPT routines used by applica-

tion programs, WPT TCL commands can be used to directly define panels and interaction objects,

or they can be used to access WorkBench-generated object definition files that contain pre-defined

panels and interaction objects.

TCL has the following general capabilities:

• Local and global variables.

• Variable assignment and expressions.

• Macro-level substitution for variables and parameters.

• Constructs for conditional execution and looping.

TAE Plus obtains a command string from a command line source, i.e. via a terminal window, and

determines whether the string is a TCL intrinsic command or a procedure invocation. If the string

is a procedure invocation, TAE Plus locates and executes the procedure.

9.1.3.3 Run-time Environment

There are two modes for running an application under TAE Plus: with and without the application

executive, TM. Applications designed via the WorkBench using WPT calls may be run without

TM. A C or Ada application program accesses the resource file at run-time. The WPT routines

affect the display of the user interface stored in the resource file. TM manages applications running

on both graphics and ASCII terminals. By running under TM, these applications can receive pa-

Page 9-6 Workstation Executives

TAE System User Interfaces

rameters collected by TM, and can send parameter values back to TM. TM interprets TCL com-

mands from either a command line in a terminal emulator window or from an ASCII terminal, or

from a TCL procedure.

The TCL user interface code automatically generated in the WorkBench displays and interacts with

panels and items via a set of commands that are analogous to the Window Programming Tools

(WPT) routines. These WPT TCL commands are a subset of the TCL commands that are used to

directly define panels and interaction objects.

While the WPT application accesses the workstation display through panels and interaction ob-

jects, TM may still access an alphanumeric terminal to display menus, help, parameter entry

screens, and the command line. Using Facelift, TM menus, help screen, and parameter entry

screens can be displayed using a panel and interaction object interface on the workstation display.

9.1.4 Applicability to the Concept Executive

TAE Plus supports user interface prototyping through its rehearse mode and generate function in
the WorkBench. The rehearsal mode allows the user to execute the designed user interface as if it

were operational for the end user. The generate function will then take the designed prototype of

the user interface and generate a skeleton program which will display and control the designed user

interface. This generated code can then be executed as is or it can be integrated with application

code to create a complete application system.

TAE is only applicable to the Concept Executive in a limited way. Since this system is only con-

cerned with the design and development of user interfaces that aspect of an executive is the only

area where the TAE could be used for its function. The TAE package has many positive features

which could be implemented in the executive. The WorkBench used by TAE is an exceptional tool

for prototyping a user interface. It allows a system developer to quickly create a user interface and

rehearse all of the events and actions which will cause the various defined panels to be displayed.

The nice thing about the WorkBench is that once the interface has been designed and rehearsed, it

can be used to generate the application code to execute the interface. Currently, TAE will generate

C, Ada, or TCL code and is designed to eventually generate C++ code for those who work with

that environment.

Another important feature of TAE is that it is based on the X Windows standard. In this age of

technology and advancement, the use of standards in the programming world is becoming an un-

deniable requirement for large systems. The use of X Windows helps achieve transportable code.

New releases of TAE will use the X Toolkit and the Hewlett Packard public-domain widget set.

This provides an excellent user interface development environment. TAE is also planning to mi-

grate to the Motif standard in the near future. The extent of this migration is not known at this time.

Motif includes a user interface language which allows user interfaces to be specified without pro-

gramming. To fully utilize Motif, TAE would have to generate user interface language statements

(as well as C and other languages).

One of the major functions of the TAE system is the Data Driven Objects (DDO's). In theory,

DDO's could be used to display telemetry data. However, the more animated DDO's would prob-

ably involve too great a processing burden to be used for large amounts of data. It would be worth-

while for the Concept Executive to provide a DDO-like widget for the display of real-time data val-

ues.

Page 9-7 Workstation Executives

OSF/Motif User Interfaces

TAE is a viable tool for creating user interfaces because it allows the user (developer) to use the

WorkBench to generate their interface code and then allows them to add to the code, integrating

the user interface code with other application software. It also provides the user with an interme-

diate set of X interface calls (WPT) or will allow the user to access the X library directly.

By using TAE the developer will be able to create a user interface which is consistent across the

system. If developers are left to their own devices, the user interfaces across the different disci-

plines of the system will have more likelihood of being inconsistent. Of course, even with TAE,

the placement of items in a panel is completely up to the developer. For this reason, there should

still be a set of user interface guidelines or standards established which must be used for every user

interface developed in the system (i.e., the placement of a help button in the upper right corner of

every panel).

9.20SF/Motif

OSF/Motif was developed jointly as a Unix user interface standard by Hewlett-Packard, Microsoft,

and Digital Equipment Corporation for the Open Software Foundation (OSF). It is a base for cre-

ating a consistent and easy-to-use graphical user interface on systems from multiple vendors. To

support various hardware platforms, OSF/Motif uses the MIT X Window System protocol stan-

dard. Motif is delivered as a combination of components - a User Interface (UI) toolkit, a window

manager, and a UI description language. Using Motif, application programmers can build the basic

objects of their UI, such as buttons, pull-down and pop-up menus, and scroll bars in a way which

will provide the user with a consistent look and feel for the interface.

9.2.1 Contact Point

The Motif system is the first product distributed by the Open Software Foundation, a not-for-profit

Unix software distributor. To obtain a copy of the software and documentation, contact:

Open Software Foundation

Eleven Cambridge Center

Cambridge, MA 02142

9.2.2 Review Process

Motif was reviewed by porting a set of UI applications written using X Windows and the Athena

toolkit to the Motif toolkit. During this process the following documentation was referenced:

• Programmer's Guide / Toolkit.

• Programmer's Guide / Motif Window Manager.

• Programmer's Guide / User Interface Language.

• Programmer's Reference Guide.

9.2.3 System Description

OSF/Motif is a graphical user interface based on the MIT X Window protocol. The OSF/Motif

environment is based on an object-action input selection model. The selection model defines the

actions that users must perform to control the window manager and applications in the OSF/Motif

environment. The selection model follows a point-and-click paradigm. Users first point at and se-

lect an object with which to work, and then point at and select an action to perform on the selected

object. OSF/Motif provides the following:

Page 9-8 Workstation Executives

OSF/Motif User Interfaces

• Toolkit.

• Window Manager (MWM).

• User Interface Language (UIL).

• Style Guide.

The OSF/Motif toolkit is a rich and varied collection of widgets and gadgets for building OSF/Mo-

tif applications. The toolkit provides a standard graphical interface upon which the window man-

ager is based. Toolkit widgets provide a 3-D reference appearance that gives users visual cues to

the effects of their actions.

The User Interface Language (UIL), the OSF/Motif presentation description language allows ap-

plication developers and interface designers to create simple text files which describe the visual

properties and initial states of interface components. Changes to components are made in the text

file, eliminating the need to change application code when tuning an interface.

The window manager works with the toolkit to manage the operation of windows on the screen.

The window manager provides functions for moving and resizing windows, reducing windows to

icons, restoring windows from icons, and arranging windows on the workspace. An additional

OSF/Motif window manager feature is the icon box. The icon box contains icons for all windows

operating under the window manager. The window manager provides users with a way to manip-

ulate the windows displayed in their OSF/Motif environment.

The OSF/Motif package also comes with a style guide which describes the standards for window

manager and toolkit behavior. This guide provides application writers with guidelines for using

toolkit widgets, widget writers with guidelines for designing new widgets, and window manager

writers with guidelines for designing new or customized window managers.

9.2.3.1 Toolkit

The OSF/Motif widget set is based on the Xt Intrinsics, a set of functions and procedures that pro-

vide quick and easy access to the lower levels of the X Window system. The Motif Widget system

is layered on top of the Xt Intrinsics, which in turn are layered on top of the X Window System,

thus extending the basic abstractions provided by X. The Motif Widget system supports indepen-

dent development of new or extended widgets. The Motif Widget system consists of a number of

different widgets, each of which can be used independently or in combination to aid in creating

complex applications. Applications can be written faster and with less lines of code using the Mo-

tif widgets; however, they will require more memory than similar applications written without us-

ing these widgets.

In Motif, every widget is dynamically allocated and contains state information. Every widget be-

longs to one of many classes, and each class has a structure that is statically allocated and initialized

and contains operations for that class. The hierarchy of the basic widget classes in Motif are pre-

sented in Figure 9-1.

Page 9-9 Workstation Executives

OSF/Motif User Interfaces

I I ectO j

Wmclo (9

I

Figure 9-1 Motif Widget Hierarchy

The basic class is the Core class. It contains resources that axe inherited by all other classes. Two

classes are layered beneath the Core class, the Composite class and the Primitive class. The Prim-

itive class has no other classes beneath it, but the Composite class has two - the Constraint class

and the Shell class. Each lower class can inherit some or all of the resources belonging to a higher

class. For example, a Manager class widget can inherit some or all of the resources belonging to

the Constraint class, the Composite class, and the Core class.

Motif has a variety of widgets and gadgets, each designed to accomplish a specific set of tasks, ei-

ther individually or in combination with others. There axe also convenience functions that create

certain widgets or sets of widgets for a specific purpose.

Widgets are used either individually or in combination to make the creation of complex applica-

tions easier and faster. An instance of a widget class is composed of a data structure containing

values and procedures for that particular widget instance. There is also a class structure that con-

tains values and procedures applicable to all widgets of that class.

Widgets axe grouped into classes according to the function of the widget. Logically, a widget class

consists of the procedures and data associated with all widgets belonging to that class. These pro-

cedures and data can be inherited by subclasses. Physically, a widget class is a pointer to a struc-

ture. The contents of this structure are constant for all widgets of the widget class. A widget in-

stance is allocated and initialized in OSF/Motif by XmCreate<widget name>, XmCreateWid-

get, or XmCreateManagedWidget. The OSF/Motif documentation divides the widgets into five

categories:

• Shell Widgets.

• Display Widgets.

Page 9-10 Workstation Executives

OSF/Motif User Interfaces

• Container Widgets.

• Dialog Widgets.

• Menu Widgets.

9.2.3.1.1 Shell Widgets

Shell widgets are top-level widgets that provide the necessary interface with the window manager.

Different Shell widget classes are provided for the various categories of top-level widgets. The Xt

Intrinsics provide some underlying shells and the Motif toolkit provides the remaining shells.

The Xt Intrinsics provide the following shell classes:

• Shell - base class for shell widgets. It provides resources for all other types of shells.

This class is internal and cannot be instantiated.

• Override Shell - used for shell windows that completely bypass the window manager.

• WMShell - contains resources that are necessary for the common window manager pro-

tocol. This class is internal and cannot be instantiated.

• Vendor Shell - contains resources used by vendor-specific window managers. This

class is internal and cannot be instantiated.

• TransientShell - used for shell windows that can be manipulated by the window man-

ager but cannot be iconified.

• TopLevelShell - used for normal top-level windows.

• ApplicationShell - used for an application's top-level window.

The Motif toolkit provides the following widgets:

• XmDialogShell - used as the parents of modal and modeless Dialogs associated with

other top-level windows.

• XmMenuShell - used as the parents of MenuPanes.

• VendorShell - provides the common state information and services needed by the win-

dow-manager visible shells.

9.2.3.1.2 Display Widgets

Display widgets are widgets that provide a means for displaying text in an non-editable fashion.

The Display widgets include:

• Core class - provides common resources that are needed by all widgets, including x and

y location, height, width, window border width.

• XmPrimitive -provides resources for things such as border drawing and highlighting,
traversal activation and deactivation.

• ArrowButton - consists of a directional arrow surrounded by a border shadow. The Ar-

rowButton will change its shadow appearance to indicate whether the button has been

selected (pressed in) or deselected (released).

• DrawnButton - consists of an empty widget window surrounded by a shadow border.

It provides the application developer with a graphics area that can have PushButton in-

put semantics.

Page 9-11 Workstation Executives

OSF/Motif User Interfaces
I

• Label - consists of either text or graphics. Label's text is a compound string and can be

multi-directional, multi-line, multi-font, or any combination of these.

• List - allows the user to make a selection from a list of items.

• PushButton - consists of a text label or pixmap surrounded by a border shadow. Push-

Buttons are used to invoke actions, such as run, cancel, stop, and so on.

• ScrollBar - allows you to view data that is too large to be viewed in its entirety. Scroll-

Bars are combined with a widget that contains the data to be viewed.

• XmSeparator - a primitive widget to be used as an item separator placed between items

in a display.

• XmText - provides a single or multi-line text editor that has a user and programmer in-
terface that can be customized. It can be used for single-line string entry, forms entry

with verification procedures, multi-page document viewing, and full-screen editing.

• XmToggleButton - consists of a text or graphics button face with an indicator (a square

or diamond shaped box) placed to the left of the text or graphics.

9.2.3.1.3 Container Widgets

Container widgets are Composite widgets that provide applications with general layout function-

ality. Since they are Composite widgets, Container widgets can have children. All of the container

widgets are built from the Core, Composite, Constraint, and XmManager widget classes. Motif

provides the following container widgets:

• XmManager - acts as a supporting superclass for other widget classes. It supports the

visual resources, graphics contexts and traversal resources necessary for the graphics

and traversal mechanisms.

• DrawingArea - an empty widget that is easily adaptable to a variety of purposes. Draw-

ingArea does no drawing and defines no behavior except for invoking callbacks to no-

tify the application when graphics need to be drawn and when the widget receives input

from the keyboard or mouse. It supports minimal geometry management for multiple

widget or gadget children.

• XmFrame - a manager that is used to enclose a single child within a border drawn by

the XmFrame widget.

• XmMainWindow - provides a standard layout for the primary window of an applica-

tion. This layout includes a MenuBar, a CommandWindow, a work region, and Scroll-

Bars. Any or all of these areas are optional.

• RowColumn - a general purpose RowColumn manager capable of containing any wid-

get type as a child. It requires no special knowledge about how its children function

and provides nothing above and beyond support for several different layout styles. The

type of layout can be configured to lay out its children in either a row or a column fash-

ion and can specify whether the children should be packed tightly together, symmetri-

cally, or with specific x and y positions.

• Scale - is used by an application to indicate a value from within a range of values and

allows the user to input or modify a value from the same range. A Scale widget allows

you to select a value from a range of displayed values by adjusting an arrow to a posi-

Page 9.12 Workstation Executives

OSF/Motif User Interfaces

tion along a line. A Scale has an elongated rectangular region with a slider that is used

to indicate the current value along the Scale.

ScrolledWindow - combines one or more ScrollBar widgets and a viewing area to im-

plement a visible window onto some other (usually larger) data display. It can operate

in an automatic manner where it performs all scrolling and display actions or it can pro-

vide a minimal support framework.

PanedWindow - is a Composite widget that lays out children in a vertically flied format.

Children appear from top-to-bottom, with the f'u'st child inserted appearing at the bot-

tom.

9.2.3.1.4 Dialog Widgets

Dialog widgets are container widgets that provide applications with layout functionality typically

used for popup "dialogs." These widgets are used for interaction tasks such as displaying messag-

es, setting properties, and providing selection from a list of items. Dialog widgets are thus used

primarily as an interface between the user and the application.

A Dialog widget will normally ask a question or present the user with some information that re-

quires a response. In some cases the application will be suspended until the user provides the re-

sponse.

A Dialog is a collection of widgets, including a DialogShell, a BulletinBoard (or subclass of Bul-

letinBoard or some other container widget), plus various children of the BulletinBoard. All of the

dialog widgets axe built form the Core, Composite, Constraint, and Manager widget classes.

A Dialog can be built by building up the necessary argument lists and creating each individual wid-

get in the Dialog. For common interaction tasks, convenience functions are defined that create the

collection of widgets that comprise a particular Dialog. The collections of widgets created by Di-

aiog convenience functions are referred to as Convenience Dialogs.

9.2.3.1.4.1 Dialog Widget Descriptions

Those widgets which are considered the basic dialog widgets are:

• BulletinBoard - provides simple geometry management for children widgets. Bulletin-

Board is the base widget for most dialog widgets, but is also used as a general container

widget.

• Command - includes a command history region and a command input region. Com-

mand also provides a command history mechanism.

• FileSelectionBox - used to get a selection from a list of altemaflves. FileSelectionBox

includes an editable text field for the directory mask, a scrolling list of filenames, and

an editable text field for the selected file.

• Form - that provides a layout language used to establish and maintain spatial relation-

ships between its children. Form includes the base level of dialog support and can also

be used as a general container widget.

• MessageBox - used to give information to the user. MessageBox includes a symbol and

a message.

• SelectionBox - used to get a selection from a list of alternatives. SelectionBox includes

a message, and editable text field, and a scrolling list of choices.

Page 9-13 Workstation Executives

OSF/Motif User Interfaces

9.2.3.1.4.2 Convenience Dialogs

Convenience Dialogs are collections of widgets that can be created by using convenience func-

tions. Each convenience dialog instantiates a dialog widget as a child of a DialogShell. Most of

the Convenience Dialogs are created with some default buttons which give the user the options of

"OK", "Cancel", and "Help."

Convenience Dialogs are either modal or modeless. A modal dialog stops the work session and

solicits input from the user. A modeless dialog solicits input from the user, but does not interrupt

interaction with any application.

The Convenience Dialogs provided by Motif are:

• BulletinBoardDialog - used for interactions not supported by the standard dialog set.

Necessary dialog components are added as children of the BulletinBoard.

• ErrorDialog - used to warn the user of an invalid or potentially dangerous condition.

• FileSelectionDialog - used to select a file.

• ForrnDialog - used for interactions not supported by the standard dialog set. Necessary

dialog components are added as children of the Form.

• InformationDialog - used to give information to the user, such as the status of an action.

• MessageDialog - used to give information to the user.

• PromptDialog - used to prompt the user for text input.

• QuestionDialog - used to get the answer to a question from the user.

• SelectionDialog - used to get a selection from a list of alternatives.

• WarningDialog - used to warn the user of the consequences of an action, and give the
user the choice of resolutions.

• WorkingDialog - used to inform the user that there is a time consuming operation in

progress and gives the user the ability to cancel the operation.

9.2.3.1.5 Menu Widgets

The RowColumn widget is the basis for most of the menu system components. It has a built-in

ability to behave like a RowColumn manager, a RadioBox, a MenuBar, a Pulldown Menu.Pane, a

Popup MenuPane, and an Option menu. Convenience functions have been provided to easily cre-

ate these special versions of the RowColumn widget.

The Motif menu system is composed of the following widgets and convenience functions:

XmRowColumn (Widget).

MenuBar (Convenience Function).

OptionMenu (Convenience Function).

Pulldown MenuPane (Convenience Function).

Popup MenuPane (Convenience Function).

XmMenuShell (Widget).

XmCascadeButton (Widget).

XmSeparator (Widget and Gadget).

Page 9-14 Workstation Executives

OSF/Motif User Interfaces

• XmLabel (Widget and Gadget).

• XmToggleButton (Widget and Gadget).

• XmPushButton (Widget and Gadget).

Applications are not required to use all of these components to use the menu system.

9.2.3.1.6 Gadgets

Gadgets provide essentially the same functionality as the equivalent primitive widgets. The pri-

mary motivation behind providing a set of gadgets is to improve performance, both in execution

time and data space. This applies to both the application and server processes and minimizes the

amount of lost functionality. The performance difference between widgets and gadgets is dramat-

ic, so it is highly recommended that applications use gadgets whenever possible.

Gadgets can be thought of as a windowless widget. This means that they do not have windows,

translations, actions, or popup children. Also, gadgets do not have any of the visual resources

found in the XmPrimitive class for primitive widgets. These visuals are referenced by a gadget

from its parent.

Examples of display gadgets include buttons, labels and separators. All of these gadgets are built

from the classes of Object, RectObj, and XmGadget. The Gadgets provided by Motif include:

• Object - is an Xt Intrinsics meta class and is therefore never instantiated. It is used as

a supporting superclass to provide common resources to other classes.

• RectObj - is an Xt Intrinsics meta class and is therefore never instantiated. It is used as

a supporting superclass to provide common resources to other classes.

• XmGadget - is a Motif meta class and is therefore never instantiated. It is used as a sup-

porting superclass to provide common resources to other gadget classes.

• XmArrowButtonGadget - has the same functionality as PushButtonGadget but displays
a directional arrow within itself.

• XmLabelGadget - consists of either text or graphics. It can be instantiated but it is also

used as a superclass for button widgets.

• XmPushButtonGadget - used to issue commands within an application.

• XmSeparatorGadget - used to provide a visual separation between groups of widgets.

It can draw horizontal and vertical lines in several different styles.

• XmToggleButtonGadget - consists of a text or graphics button face with an indicator

placed to the left of the text or graphics. ToggleButtonGadgets are used for setting non-

transitory data within an application.

9.2.3.1.7 Convenience Functions

Convenience functions are functions that enable you to create certain widgets or gadgets, or groups

of widgets or gadgets, by making just one function call. A Convenience function creates a prede-

termined set of widgets and returns the parent widget's ID. For widgets and gadgets other than

Dialog widgets, Convenience functions are of the form:

XmCreate<widget name>.

For Dialogs, convenience functions are referred to as Convenience Dialogs, and are of the form:

<DialogWidgetName>Dialog.

Page 9-15 Workstation Executives

OSF/Motif User Interfaces

It is very easy to use a convenience function to create a widget. The XmCreate<widget name>

functions create unmanaged widgets. Your application must manage the set of widgets before they

will be displayed. You can manage each widget separately or as a group.

9.2.3.2 Window Manager

The OSF/Motif user interface provides a rich environment, designed to facilitate communications

between users and an application. This environment is composed of discrete graphical elements.

The graphical elements of the OSF/Motif user interface facilitate communication by providing us-

ers with a "workspace" which provides interaction with an application which is more familiar (thus

more intuitive) and less technical than the traditional user interface provided by the command-line

prompt. "Workspace" is used in the Motif environment to emphasize that the functionality and

graphical elements of the user interface are tools that empower users to accomplish tasks with their

computers.

The OSF/Motif window manager (MWM) frames application windows with an eight-segment bor-

der that can be stretched to resize the window. A title area supplied by the window manager dis-

plays a title for the window and can be used to move it. Graphical buttons embedded in the window

manager frame provide a window management menu and other window controls. Additionally,

the OSF/Motif window manager has a three-dimensional appearance so that the control buttons,

when "pressed" by the mouse pointer, actually look like they have been pressed. The window man-

ager helps provide for consistent behavior from one application to the next.

The elements of the user interface, the objects that users see (for example, windows, icons, menus,

and dialog boxes) appear on the workspace and can be stacked one on top of one another like pa-

pers on a desk or tools on a workbench.

The OSF/Motif Window Manager (MWM) provides window management facilities within the

framework of the OSF/Motif environment. MWM provides you with an industry standard user in-

terface, a high degree of flexibility, and a pleasing visual interface.

MWM facilitates user-computer communications in the following areas:

• MWM provides for direct manipulation of graphic objects using an object-action mod-

el. A user controls the operation of an application program by selecting a window,

menu, icon, or other graphic object and then indicating an action to be done to that ob-

ject.

• MWM uses two ASCII configuration files, .Xdefaults and .mwmrc. By editing these

files, users can choose the size, locations, and color of the graphic elements in their en-

vironments.

• MWM allows keyboard-only access to window management functionality in cases

where mouse access is not available or keyboard access is preferred.

• MWM provides a consistent appearance and behavior using the OSF/Motif X Widgets

visual style as specified in the OSF/Motif Style Guide.

MWM provides all required elements of OSF/Motif behavior, but it is also extensible so you can

modify window appearance and behavior to suit the specific needs of your application.

In conformity with OSF/Motif behavior, MWM will allow a user to perform window management

functions without using a mouse. Window management functions performed from the keyboard

generally apply to the active window, the one window that is getting keyboard input. However,

Page 9-16 Workstation Executives

OSF/Motif User Interfaces

you can also use the keyboard for non-specific window management functions such as changing

the stacking order of windows on the screen.

While the default window management behavior is recommended for the sake of consistency,

OSF/Motif Window Manager allows users to modify the default behavior to suit their needs. Users

can modify the default behavior of OSF/Motif Window Manager by changing the entries in the re-

source files that it uses to configure its appearance and behavior. Clients also have a number of

configuration files.

9.2.3.2.1 Window Types

As client applications and code are written, particular types of windows will be used to fulfill the

specific needs of the design plan. The MWM recognizes the following types of client windows:

• Primary - a primary window is a top-level window, a direct descendent of the root win-

dow. MWM provides this type of client window with a window flame. By default, this

frame is decorated with the full set of functional frame components (resize frame han-

dles, tide bar, and window control buttons). The window decoration on primary win-

dows can be changed either programmatically from a client or by using the resource

files.

• Secondary - a secondary window is a window that is transient in nature. A secondary

window is associated with another window, usually a primary window, and is always

over that window in the window stack. Secondary windows are iconified (minimized)

together with their associated windows. A secondary window may also receive key-

board or pointer input that it does not pass on to its associated window. This is known

as being "modal" with respect to the associated window. A secondary window typically

receives less window frame decoration than a primary window, and, typically, fewer

window management functions are available to control the window.

• Client Icon - a client icon is supplied by a client for use as an image in an MWM icon.

• Client Icon Window - a client icon window is supplied by a client for use as an alterna-

tive to a pixmap image in MWM icons (minimized windows). This window can be
used while the window is in its iconic state.

• Override-redirect - An override-redirect window is typically visible for only a short

time and, while in use, the pointer should be grabbed by the client. A common example

of this type of window is a pop-up menu. MWM does not place override-redirect win-

dows in a window frame, nor does MWM support window management operations on
override-redirect windows.

Certain windows constrain the user's input. There are three levels of window constraints, called
"modes."

• Modeless windows do not constrain user input to other windows. Client primary win-

dows are generally modeless.

• Application Modal Windows "prevent" input from going to an associated application's
windows.

• System Modal Windows are similar to application modal windows except that they pre-

vent input from going to ANY other window on the screen.

Page 9-17 Workstation Executives

OSF/Motif User Interfaces

MWM uses the following window types to provide window management services to your client

application:

• Client Frames - a client frame is placed around the client area.

• Icon Frames - an icon is a small graphic representation of your client application win-

dow. When the window manager "minimizes" Ciconifies") a full-sized client window,

it uses an icon window frame to represent the client. Icons can be arranged on the

screen by the window manager or placed in an icon box.

• Icon Box - An icon box is a window used by the window manager to contain icons. An

icon box window is decorated with a window frame that is typically the same as a pri-

mary window's frame.

• Feedback Window - A feedback window displays at the center of the screen the size or

location of a primary client window which is being either resized or repositioned by the

window manager.

9.2.3.2.2 Functions of the MWM Window Frame

The OSF/Motif Window Manager surrounds client windows with a functional frame. Positioning

the pointer on a part of the frame and performing the appropriate mouse button action or key action

executes the function of that frame part.

The parts of the MWM window manager frame and their functions are:

• Title Area - used to move a window.

• Window menu button - used to display the window menu.

• Minimize button - used to iconify the window.

• Maximize button - used to expand a window to maximum size.

• Resize frame handles - Stretch or shrink a window horizontally, vertically, or diagonal-

ly (in two directions).

The window menu contains selections that provide consistent function from one MWM application

to another. This consistency reduces the time it takes a user to learn to manage your application

windows. The window menu provides an additional way to access window manager functionality.

You can select items in the window menu with either the mouse or the keyboard. The available

menu selections are:

• Restore - restores a window to its normal size from an icon or after maximizing.

• Move - changes the location of a window.

• Size - changes the width and height of a window.

• Minimize - shrinks a window to its icon (graphic representation).

• Maximize - enlarges a window to its maximum size.

• Lower - places a window at the bottom of the window stack, the position closest to the

workspace (root window).

• Close - terminates the client.

Page 9-18 Workstation Executives

OSF/Motif User Interfaces

9.2.3.2.3 Communicating Between MWM and Clients

A user can set up communications between a client and MWM and configure MWM resources and

functions (which might affect your client application). The following topics will help in the estab-

lishment of communications:

• MWM Programmatic Interface Standards.

• Inter-Client Communication Conventions.

• MWM Specific Information.

The MWM programmatic interface is based on the Inter-Client Communications Conventions

Manual (ICCCM). The ICCCM establishes the standards for "good citizenship" among clients in

a multi-client environment. The OSF/Motif toolkit supports the inter-client communication con-

ventions and facilitates appropriate communication with MWM.

9.2.3.3 User Interface Language

The User Interface Language (UIL) is a specification language for describing the initial state of a

user interface for a Motif application. The specification describes the objects (for example, menus,

form boxes, labels, and push buttons) used in the interface and specifies the functions to be called

when the interface changes state as a result of user interaction.

To create a user interface with UIL and the Motif Resource Manager (MRM), the following steps

need to be performed:

• Specify the user interface in a UIL module, which is stored in a UIL specification file.

• Compile the UIL specification file to generate a User Interface Definition (UID) file.

• In the application program, use MRM run-time functions to open the UID file and to

access the interface definitions. MRM builds the necessary argument lists and calls

widget creation functions in the Motif Toolkit.

Using the UIL, the following can be specified:

• Objects (widgets and gadgets) that comprise the interface.

• Arguments (attributes) of the widgets and gadgets desired.

• Callback functions for each object.

• The widget tree for the application.

• Literal values which can be fetched by the application at run time.

The UIL compiler has built-in tables containing information about widgets. For every widget in

the Motif Toolkit, the UIL compiler knows the widgets that are valid children of the widget, the

widget arguments, and the valid callback reasons for the widget. The UIL compiler uses this in-

formation to check the validity of an interface specification at compilation time, to help reduce run-

time errors.

The benefits of using the UIL and the MRM are easier coding, earlier error detection, separation

of form and function, faster prototype development, and interface customization.

UIL offers the following features to increase productivity and the flexibility of programs:

• Named Values - Instead of directly specifying the values for widget and gadget at-

tributes, named values can be used which are similar to variables in a programming lan-

guage. A literal value (such as an integer or string) can be given a name and then the

Page 9-19 Workstation Executives

OSF/Motif User Interfaces
I

name can be used in place of the value specification. In addition, MRM functions can

be used to fetch named values from the UID file for use at run time.

• Compile-Time Expressions - Expressions can be used to specify values in UIL. A valid

UIL expression can contain integers, strings, floating-point numbers, Boolean values,

named values, and operators. Using expressions can make values more descriptive and

can help to avoid recomputing values.

• Identifiers - Identifiers provide a mechanism for referencing values in the UIL that are

provided by the application at run time. In the application program, an MRM function
is used to associate a value with the identifier name. Unlike a named value, and iden-

tifier does not have an associated data type. You can use an identifier as an attribute

value or callback procedure tag, regardless of the data type specified in the object or

procedure declaration.

• Lists - UIL allows the creation of named lists of attributes, sibling widgets, and callback

procedures that can later be referred to by name. This feature allows the reuse of com-

mon definitions by simply referencing these definitions by name.

• Support for Compound Strings - Most Motif Toolkit widgets require strings used in the

user interface (labels, menu items, and so on) to be compound strings. UIL fully sup-

ports the use of compound strings, including left-to-right and right-to-left writing direc-
tion and choice of fonts.

• Include Files for Useful Constants - The Motif Toolkit provides a UIL include file that

contains useful constants for coding a user interface.

9.2.4 Applicability to the Concept Executive

The OSF/Motif environment is not really an example of an executive, however it is tool which

could be used within the scope of a Concept Executive to develop both the executive and the user

applications. The OSF/Motif environment would provide the end-users of the developed applica-

tions with a behaviorally consistent graphical user interface.

By providing consistent behavior the users' ability to perform a task would be enhanced by en-

abling them to focus on the task itself rather than on the tools or the methodology they use to per-

form the task. Motif-developed applications will help to provide this consistency across the sys-

tem.

Probably the most useful benefit of the Motif system lies in its implementation of Convenience

Functions. These functions are callable routines which provide a common interface window which

requires a grouping of individual widgets. By making one function call in the application program

and providing the appropriate arguments a designer can instantiate a number of widgets. This is

extremely useful for interface objects which always require multiple widgets. An example is an

error message notification. When an error is detected in the system, a message is usually displayed

informing the user of what problem is occurring and a prompt is also displayed for verification.

With the convenience function, ErrorDialog, this window can be displayed with minimal coding

on the part of the application. Not only do the convenience functions provide simplified applica-

tion code for creating groups of widgets, but they also help to maintain the consistency of the sys-

tem by creating the widgets in the same manner.

Another feature of the Motif system which is useful, is the classification of Gadgets. Gadgets are

set of widgets which have restricted resource settings and do not have windows, translations, ac-

Page 9-20 Workstation Executives

OSF/Motif User Interfaces

tions, or popup children. These objects obtain a number of their visual resources from their parent.

This results in a much lower requirement for the storage of each widget instance. The main moti-

vation for using gadgets is better execution time and data space performance.

As for the usefulness of the UIL, SwRI could not gather that the UIL was an automated process,

such as TAE, which means that the system developer would basically have to learn a new language

as well as learn the Motif widget set. It is SwRI's opinion that the programmer would be better off

becoming familiar with the Motif widget set and instantiating the objects from within the applica-
tion code.

Page 9-21 Workstation Executives

Standards

10.0 Standards

The chapter will discuss several software standards which are specified as part of the Concept Ex-

ecutive. These standards are presented in detail to allow the reader to help understand why the spe-

cific standards were selected. Note that the only standards presented are those which were not

specified as part of the Hardware Independent Software Development Environment (HISDE) pro-

totype. This is not to say that the Concept Executive is using different standards, but rather to re-

flect updates in standards since HISDE was developed. Figure 10-1 compares the standards used

in HISDE and in the Concept Executive.

: System :.........

:: HISDE, : Concept

: I :: Executive

_iii_i_iiiiii_!_i_!_!_!_i_i_i_!_i_i_i_!_[_mi_i_iiiii_ii_System V Version 3 System V Version 4

i_i!iii!i_!_i_iii_g_iii!iiiii_ii:?!:i:i:i:i:?:...::!:!:_!:!:!:::!:::!:_:!:!:i:i:_:i.:._:!:!:::!:::::!:!:!:!:_:!:_:_:!:::!:i:!:_:i:!:i:i:i:i

 iiiiii i i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiii i i i iiiiiiiiiiiiliiii!iiii iiiii ii i iii iiiiiiii
::: ::::::::::::::::::::::::::::::

::iiiiiii!i!i!iiiii!i!!iiiiiii i!!iiiiiiiiiiiiiiiiiii!iiiill

:::_::::!:i:i:i:;:i:i:i_ili:ililililililililil_lil!l_l_l_i

:: IHIHI IIIIIII .H II II1_
:::

iiiiiiiiiiljil4iiiiiiiiiiiiiiii i : iiiiiiiiiii!ijililiiiiiiiil
:.:....,,:.:+:.:...:.. :.... ,:.:............ ;.:..:+

...... J.IIl/I IIHI

::

:i!iiiiiiiii!iiiiiiiiiii!iiii :Niiiiiiiiiiii!iii!iiii

Legend."

Kemigan and Ritchie C

Bourne shell

/ntemational St_ndna'ds
Organization (ISO) OSI Model

Nolle

X Windows

X Toolkit

Athena Widgets

GKS
PHIGS

ANSI C

Korn shell

POSIX 1003.2

Latemational Standardt

Organization (ISO) OSI Model
POSIX 1003.8

POSIX 1003.4

X Window_, X Todldt

Motif Widgets, UIL, mwm

PI201

GKS

PHIGS

Standard items listed in bold text are new standards.

Figure 10-1 Comparison of Standards

The standards which are described in this document include the following:

• Portable Operating System Interface Definition (IEEE POSIX 1003).

• Windowing Standards (IEEE P1201).

Page 10-1 Workstation Executives

POSIX Standards

• UNIX System V Release 4 (SVR4).

• ANSI C.

Note that the Motif user interface standard which is specified by the Concept Executive is de-

scribed fully in Chapter 9.

10.1 POSlX

The Portable Operating System Interface Definition (POSIX) is the standard operating system be-

ing defined by the Institute of Electrical and Electronic Engineers (IEEE). POSIX is a standard

which specifies all interfaces to the operating system and related support software (networking,

real-time functions, etc.). The POSIX effort is significant, as it is the only interface which is glo-

bally accepted and is independent of the direction of any single vendor or consortium. This is op-

posed to offerings from UNIX International (UI) and the Open Software Foundation (OSF) which

are driven by certain vendors. The goal of POSIX is to provide application portability across a

number of operating systems, including those not based upon UNIX.

POSIX is currently not a fully defined standard. At this time, only the POSIX 1003.1 specification

is complete. The 1003.1 standard specifies only the programmatic interfaces to the operating sys-

tem (the equivalent of UNIX system calls). Completed standards are not yet available for com-

mand line, network, real-time or other functional interfaces. These interfaces are being addressed

by working groups, each of which is at a different level of completion. Although some working

groups are nearing completion, it will be several years before the complete standard is available

and implemented on a variety of systems.

It is very important to note that POSIX is not an implementation of an operating system. Rather it

is a specification of the programmatic and command-level interfaces. This allows for a wide vari-

ety of fundamentally different operating systems to provide a POSIX interface and therefore allow

development of portable applications.

The reference model for the POSIX interface is the UNIX operating system. The majority of

POSIX interfaces closely match existing UNIX interfaces and behavior. Therefore, the most ap-

propriate operating system selection for environments desiring future POSIX compliance is UNIX.

The following sections discuss in more detail the status and direction of several of the POSIX

working groups. The working groups covered are as follows:

• POSIX 1003.2 - Command line interface.

• POSIX 1003.4 - Real-time interface.

• POSIX 1003.6 - Security interface.

• POSIX 1003.8 - Network interface.

10.1.1 Contact Point

The IEEE POSIX Standards are prepared by various working groups, sponsored by the Technical

Committee on Operating Systems of the IEEE Computer Society. For information on these work-

ing groups contact:

Secretary, IEEE Standards Board,

Institute of Electrical and Electronics Engineering, Inc.

345 East 47th Street

Page 10-2 Workstation Executives

POSIX Standards

New York, NY 10017

10.1.2 1003.2 - Shell and Application Utility Interface

The POSIX 1003.2 working group was formed to define a standard source code level interface to

shell services and common utility program for application programs conforming to POSIX. This

group began work in 1985 and is currently in the balloting process for its User Portability Exten-

sion. The primary goal for this working group was to specify a standard interface that may be ac-

cessed in common by both applications programs and user terminal-controlling programs to pro-

vide services of a more complex nature than the primitives provided by POSIX 1003.1. This in-

terface shall be capable of being implemented on conforming systems. It shall include the

following components:

• Application program primitives to specify instructions to an implementation-defined

"shell" facility.

• A standard command language for a shell that includes program execution, I/O redirec-

tion and pipelining, argument handling, variable substitution and expansion, and a se-

ries of control constructs similar to other high-level structured programming languages.

• A recommended utility syntax for utility naming and argument specification.

• Primitives to assist applications programs and the shell language in parsing and inter-

preting utility arguments.

• Recommended environment variables for use by shell scripts and application programs.

• A minimum directory hierarchy required for the shell and applications.

• A group of utilities that may be called from applications programs for complex data ma-

nipulation and other tasks common to many applications.

• An optional group of utilities to be used for the software development of applications.

• Utilities and standards for the installation of applications.

The initial focus of 1003.2 was to standardize services via a C language interface. Future revisions

are expected to contain bindings for other programming languages as well. This will be accom-

plished by breaking the standard into two parts, a section defining core requirements independent

of any programming language, and a section composed of programming language bindings.

The core requirements section will define a set of required services common to any programming

language that can be reasonably expected to form a language binding to this standard. These ser-

vices will be described in terms of functional requirements and will not define programming lan-

guage-dependent interfaces. Language bindings will consist of two major parts. One will contain

the programming language's standardized interface for accessing the core services defined in the

programming language-independent core requirements section of the standard. The other will con-

tain a standardized interface for language-specific services.

The working group consulted a number of documents in the course of its deliberations, to select

utilities and features. The three primary reference documents were:

• The System V Interface Definition (SVID), Issue 2, Volume 2.

• The X/Open Portability Guide (XPG), Issue II, Volume 1.

• The ANSI/X3.159-198x Programming Language C Standard.

The current document produced by this working group is broken into nine parts:

Page 10-3 Workstation Executives

POSIX Standards

Global Concepts.

The environment interfaces provided to applications.

The C language interfaces provided to applications.

The shell command line interpreter language.

Descriptions of the utilities in the required "Execution Environment."

Descriptions of the utilities in the required "Application Installation Environment."

Descriptions of the utilities in the optional "Software Development Environment."

Descriptions of the utilities in the optional "C Development Environment Utilities."

Descriptions of the utilities in the optional "FORTRAN Development Environment

Utilities."

10.1.2.1 Global Concepts

The global concepts covered by the 1003.2 working group for the standardization of Shell and Ap-

plication Utility Interfaces include:

• Stand-alone Utilities.

• Character Set.

• Regular Expression Notation.

• Pattern Matching Notation.

• Utility Conventions.

• Utility Description Defaults.

• File Format Notation.

• Symbolic Limits.

Utilities def'med in this standard may be implemented as built-in utilities within the command lan-

guage interpreter. This is usually done to increase the performance of frequently-used utilities. All

implementations conforming to this standard may provide only built-in versions of cd, getopts, and

umask; however, the standard shall provide stand-alone versions of all other utilities defined for

Execution Environment, Application Installation, Software Development Environment, C Devel-

opment Environment, and FORTRAN Development Environment. These stand-alone versions are

in addition to any built-in versions that may be provided.

10.1.2.2 Environment

Environment variables defined by the standard are of interest to multiple utilities. There are other

environment variables that are of interest to specific utilities. Environment variables that are of

interest to specific utilities are defined as part of the utility description. The following environ-
mental variables are made available to each utility during execution:

• PATH - the sequence of path prefixes that certain functions apply in searching for an

executable file known only by a file name. This variable shall be defined.

• EDITOR - the name of the program the user wishes tO employ for editing fLieS. This

variable may be defined.

• HOME - the name of the user's home directory, from the user database. This variable

may be defined.

Page 10-4 Workstation Executives

POSIX Standards
I

• LOGNAME - the name of the user's login account, corresponding to the login name in

the user database. This variable may be defined.

• MAIL - This variable may be defined.

• SHELL - This variable may be defined.

• TMPDIR - This variable may be defined.

• USER - This variable may be defined.

• LANG - This variable may be defined, but the format and allowable values are not de-

fined by the standard.

• LC-COLLATE - This variable may be defined, but the format and allowable values are

not defined by the standard.

• LC_CTYPE - This variable may be defined, but the format and allowable values are not

defined by the standard.

• LC_MONETARY - This variable may be defined, but the format and allowable values

are not defined by the standard.

• LC_NUMERIC - This variable may be defined, but the format and allowable values are

not defined by the standard.

• LC_TIME - This variable may be defined, but the format and allowable values are not

defined by the standard.

• TERM - This variable may be defined, but the format and allowable values are not de-

fined by the standard.

• TZ - This variable may be defined, but the format and allowable values are not defined

by the standard.

There axe a number of files and a directory hierarchy which are required by the standard. The fol-

lowing directories shall exist on a conforming implementation:

• / (the root directory); applications shall not be allowed to create files in this directory.

• /dev - contains device specific files; applications shall not be allowed to create files in

this directory.

• /tmp - made available for programs that need a place to create temporary files; applica-

tions may create files in this directory.

• /local and/usr/Iocal - holds local application commands; not required, but if it exists,

applications cannot create files in these directories.

• /usr/man - contains reference manual pages; not required, but if it exists, applications
cannot create files in these directories.

A conforming system shall contain the following files:

• /dev/null - an infinite data sink; data written here is discarded; reads from here always

return zero bytes.

• /dev/tty - a synonym for the control terminal associated with the process group of a pro-
cess.

Page 10-5 Workstation Executives

POSIX Standards

10.1.2.3 C Language Interface Option

The C Language Interface option defines interfaces that allow C language applications to access

the shell command language and to process regular expressions, command arguments, and expand-

able file names in a standard manner. The functions which provide these interfaces arc:

• Shell Command Interface:

system0 - execute command.

popen0, pclose0 - pipe communications with programs.

getenv 0 - access environment variables.

• Regular Expression Parsing:

regcomp0 - compile the regular expression.

regexec0 - match a null-terminated string against a compiled regular expression.

regfree0 - free any memory allocated by regcomp0.

• Command Option Parsing:

getopt0 - command-line parser that returns the next option letter in argv that matches a leuer in
optstring.

* File Name Generation:

glob0 - pathname generator.

globfree0 - free space associated with glob0.

• Get POSIX Configuration Value:

posixconf0 - return a pointer to a configuration defined value.

10.1.2.4 Shell Command Language

The shell is a command language interpreter. The standard describes the syntax of that command

language as it is used by the sh utility and the system() and popenO functions. The working group

selected the Bourne Shell as the starting point for its standard. It consciously omitted the BSD C

Shell from consideration, for the following reasons:

• Most "portable" shell scripts assume the Bourne Shell.

• The majority of tutorial materials on shell programming assume the Bourne Shell.

• The Bourne Shell is an acknowledged better performer on most implementations.

Despite the selection of Bourne, the working group did not limit the possibilities for a shell com-

mand language that was upward-compatible.

Only the system() and popen0 function interfaces are described by this standard. Implementation

may provide terminal interface programs that allow system users to directly interact with the sys-

tem using the language described here, and typically provide extra facilities that are suitable for

such usage.

The following Korn Shell features are in the 1003.2 Shell Command Language, but not in the Sys-
tem V, Release 3 Bourne Shell:

• Operators- (()) and < >.

• Reserved words - [[and]].

• Substring expansions - ${name#pattern}, ${name%pattern}, ${name##pattern}, and

$ {name% %pattern }.

Page 10-6 Workstation Executives

POSIX Standards

• String length expansion - ${#name }.

• Command substitution syntax - $(command).

• The variable PWD.

• Built-in commands - alias, bg, fg, typeset, and unalias.

• Test operators - -nt, -ot, -ef.

• Assigning values with export and read-only.

• Symbolic names for signals and traps.

The working group has defined the following features to be included in the Shell Command Lan-

guage:

• Reserved words: case, do, done, elif, else, esac, fi, for, function, if, then, until, while,

{ }, [[,]1.

• Comments.

• Line Continuation.

• Quoting.

• Parameters and Variables.

• Word Expansions.

• Redirection.

• Exit Status for Commands.

• Shell Grammar:

Simple Commands.

Pipelines.

Lists.

Compound Commands.

• Signals and Error Handling.

• Shell Execution Environment.

• Job Control.

• BNF for the Shell.

• Special Built-in Commands: alias, bg, colon, dot, break, continue, eval, exec, exit, ex-

port, fg, readonly, set, shift, trap, type, set, unalias, unset.

10.1.2.5 Execution Environment Utilities

The Execution Environment Utilities are the utilities that shall be implemented in all conforming
1003.2 systems. These utilities include:

• asa - interpret ASA carriage control characters.

• awk - pattern scanning and processing language.

• basename - return nondirectory portion of pathname.

• bc - arbitrary-precision arithmetic language.

• cat - concatenate and print files.

Page 10-7 Workstation Executives

POSIX Standards

cd - change working directory.

chgrp - change file group ownership.

chmod - change file modes.

chown - change file ownership.

cmp - compare two fries.

colldef- define collation sequence.

comm - select or reject lines common to two sorted files.

cp - copy files.

cut - cut out selected fields of each line of a file.

date - display the date and time.

dd - convert and copy a file.

diff- compare two files.

dirname - return directory portion of pathname.

echo - writes its arguments to standard output.

ed - text editor.

egrep - search a file for a regular expression.

env - set environment for command execution.

expr - evaluate arguments as an expression.

false - return false value.

fgrep - search a file for strings.

find - find files.

fold - filter for folding lines.

getopts - parse utility options.

grep - file pattern searcher.

id - return user identity.

hd - hexadecimal dump.

join - relational database operator.

kill - terminate or signal processes.

In - link files.

logname - return user's login name.

lp - send requests to an LP line printer.

ls - list directory contents.

mkdir - make directories.

mkf'ffo - make FIFO special files.

mktemp - make a name for a temporary file.

mv - move files.

Page 10-8 Workstation Executives

POSIX Standards

• nohup - run a utility immune to hangups and quits.

• paste - merge corresponding or subsequent lines of files.

• pax - portable archive interchange.

• posixconf - get POSIX configuration values.

• posixlog - save messages.

• pr - print files.

• pwd - return working directory name.

• read - read.

• rm - remove directory entries.

• rmdir - remove directories.

• sed - stream editor.

• sendto - send message.

• sh - shell, the standard command language interpreter.

• sleep - suspend execution for an interval.

• sort - sort, merge, or sequence check files.

• stty - set the options for a terminal.

• sum - display File checksums and block counts.

• tee - pipe fitting.

• test - condition evaluation utility.

• touch - change file access and modification times.

• tr - translate characters.

• true - return true value.

• tty - return user's terminal name.

• umask - set file mode creation mask.

• uname - return system name.

• uniq - report or filter out repeated lines in a file.

• uuname - list uux names of known systems.

• uux - execute commands on remote systems.

• wait - await process completion.

• wc - word, line, and byte count.

• xargs - construct argument list(s) and execute command.

• xform - transform collation sequence.

10.1.2.6 Application Installation Utilities

No single installation utility or procedure is sufficient to work with aU possible applications, since

specialized applications have unique needs. The following provides the minimal requirements for

any installation procedure.

Page 10-9 Workstation Executives

POSIX Standards
I I I I

An implementation shall provide at least one installation utility. The name and syntax of this utility

is implementation-defined. This installation utility shall be part of an installation procedure. This

procedure shall be capable of the following:

• Describing the application; for example, listing components.

• Describing the necessary conditions for installation; for example, space required.

• Describing the consequences of installation; for example, files overwritten.

• Installing the application.

10.1.2.7 Software Development Environment Utilities

The Software Development Environment Utilities are the utilities that shall be implemented in all

systems that claim conformance to the optional Software Development Environment. These util-
ities include:

• ar - create and maintain library archives.

• make - maintain, update, and regenerate groups of programs.

10.1.2.8 C Development Environment Utilities

The C Development Environment Utilities are the utilities that shall be implemented in all systems

that claim conformance to the optional C Development Environment. These utilities include:

• cc - compile C programs.

• lex - generate programs for simple lexical tasks.

• yacc - yet another compiler compiler.

10.1.2.9 FORTRAN Development Environment Utilities

The FORTRAN Development Environment Utilities are the utilities that shall be implemented in

all systems that claim conformance to the optional FORTRAN Development Environment. These
utilities include:

• fortran - FORTRAN compiler.

10.1.3 1003.4 - Real-Time Extensions

The POSIX 1003.4 committee is responsible for establishing a standard for real-time extensions

for POSIX 1003. I. This effort is required for developing portable real-time POSIX applications.

The currently available real-time UNIX environments can be broken into three types of products:

host-target approach, rewriting the UNIX kernel, and adding preemption points to the UNIX ker-
nel.

VxWorks, VRTX, and pSOS are examples of the host-target approach to real-time UNIX. This

approach, requires at least two processors. One processor runs UNIX while another processor or

processors run a proprietary operating system. All real-time functionality is contained in the pro-

prietary system. The UNIX processor usually performs operator I/O or other non-real time opera-

tions. Each proprietary operating system will support several different vendors' hardware; how-

ever, there is no portability between these operating systems. Porting between supported hardware

configurations requires recompiling. This approach has produced systems with interrupt response

times of less than 100 microseconds, the fastest of the three approaches.

Page 10-10 Workstation Executives

POSIX Standards

LynxOS and Regulus are examples of rewriting the UNIX kernel to support real-time applications.

One major problem with UNIX in a real time-environment, is the time spent in the kernel. Rewrit-

ing the kernel results in interrupt response times in the 200-300 microsecond range. To an appli-

cation the operating system looks like SVID. Code may be ported from an SVID system with

recompilation. But applications written with LynxOS or Regulus real time-extensions will not be

portable to any other operating system.

RTU by MASSCOMP and VENIX by VentuCom Inc. are examples of adding preemption points

to the UNIX kernel. This approach allows the use of AT&T kernel code, but results in the slowest

interrupt response time of the three approaches (guaranteed 3 milliseconds for RTU). RTU only

runs on MASSCOMP computers and VENIX runs only on Intel 80286 and 80386 platforms. Thus,

applications written for these operating systems are not portable to other systems.

The above approaches do not allow the development of portable applications. POSIX 1003.4 tries

to remedy this situation. The major additions specified in POSIX 1003.4 /Draft 8 are: binary sema-

phores, process memory locking, shared memory, priority scheduling, asynchronous event notifi-

cation, timers, IPC message passing, synchronized I/O, asynchronous I/O, real time files, and

threads. Metrics are included in the specification to aid in evaluating the performance of vendors

implementation of the real time extensions. This is important since there is no required perfor-

mance for compliance. In fact an implementation may keep the AT&T kernel without exemption

points and still be POSIX compliant. An implementation may not actually implement any of the

above additions and still be compliant since all of the additions are listed as optional in the POSIX

standard.

10.1.3.1 Binary Semaphores

Binary semaphores are a high-performance process synchronization mechanism. They are access-

ed through special files in the filesystem namespace. The binary semaphore is the lowest level of

process synchronization.

A binary semaphore may have two states, locked and unlocked. A process may lock a resource

from use by any other process. When the process has completed use of the resource, the process

unlocks the binary semaphore.

10.1.3.2 Process Memory Locking

Process memory locking allows an application to lock a process in memory. In other words, the

process will not be swapped to a mass storage device. This increases throughput since swapping

to disk is relatively slow. This also allows a deterministic response time for an event since it pre-

vents the operating system from swapping out the time critical process. Processes that would be

memory locked include interrupt handlers and processes that are time critical.

10.1.3.3 Shared Memory

Shared memory is the fastest way for processes to pass information. Shared memory is accessed

as a special file. Thus, open(), close(), and other file functions are used on shared memory files.

A process establishes a map between the process' virtual address space and the associated special

file. Thus, a process accesses the shared memory directly rather than from using read(), write(),
and lseeko).

Page 10-11 Workstation Executives

POSIX Standards
| I

10.1.3.4 Priority Scheduling

Priority scheduling allows the applications to prioritize processes. In a standard UNIX system an

aging process is applied. This means that processes are scheduled by the amount of CPU time they

have used, not by the time criticalness of their process. Priority scheduling allows processes to take

more CPU time if they are time critical.

POSIX 1003.4 specifies two types of scheduling algorithms, first in-first out (FIFO) and round rob-

in (RR). FIFO allows a process to run to completion or until the current process yields to another

process. RR allows a process to run for a specified interval. When the interval time has expired,

the current process is moved to the tail of the process list and will run again when all processes of

the same priority have run for one interval.

10.1.3.5 Asynchronous Event Notification

Asynchronous event notification allows a process to keep track of multiple asynchronous events

that are performed in parallel. An event includes asynchronous I/O completion, timer expiration,

message arrival, and user defined event occurrence.

This mechanism is created to correct deficiencies in the traditional UNIX signal mechanism. First,

signals in UNIX could get lost. In POSIX event notifications will not get lost. In traditional UNIX

systems, queued signals do not have a defined order of delivery. In POSIX events are delivered in

a FIFO order. The relationship between signals and events is implementation defined.

In addition to the two requirements listed above, POSIX events also allow polled event reception,

for a high performance notification mechanism, and allow the application to uniquely determine

the event. The application may uniquely determine the event that occurred because the event

mechanism passes a user supplied value. Prioritized event handling is also supported.

10.1.3.6 Timers

Timers in POSIX 1003.4 aUow for nanosecond resolution. Four types of timer types are supported:

periodic, offset, relative, and absolute. A periodic timer allows a process to be scheduled at a de-

fined frequency. This type can be used in conjunction with the other three timer types. An offset

timer delays a given time between a program level request and the scheduling of a program. A

relative timer delays a given time after the recognition of an internal event. And an absolute timer

establishes an absolute time, not a time delay, when a program will be scheduled by the operating

system.

10.1.3.7 IPC Message Passing

Interprocess communication (IPC) message passing allows processes to send and receive messages

to and from message queues. This may be done synchronously or asynchronously. The message

queues are system wide and exist in the file system name space as special files.

IPC queues may have multiple writers and multiple readers; however, reading a queue is destruc-

tive. IPC queues may be managed using different models. The simplest model is the copy model

in which the operating system copies the message buffers before the sender continues execution,

or copies the message buffer to a receiver defined location. A move model keeps one copy of the

message buffer. This results in the sender losing access to the buffer until the receiver frees the

buffer. Another type of model is the use of shared memory to store the buffer. This assumes both

sender and receiver have access to the same shared memory area. The sender losses control of the
buffer until the receiver frees the buffer.

I

Page 10-12 Workstation Executives

POSIX Standards

POSIX 1003.4 has created this new message passing facility due to the inefficiencies of SVID mes-

sage queues and streams, and BSD's sockets. SVID and BSD facilities did not allow time stamps

or out-of-order receipt based on classification of messages. Thus, SVID and BSD applications

must be rewritten to support IPC message passing.

10.1.3.8 Synchronous and Asynchronous I/O

POSIX 1003.4 specifies synchronous and asynchronous I/O operations. Synchronized I/O opera-

tions are required to complete before program execution is returned to the calling process. This

insures that data has transferred to the output device. Their are two levels of data integrity speci-

fied. One is data only integrity. The second is file integrity; that is, integrity is assured for the data

and the parameters associated with the file. A file synchronization function is included in the spec-

ification. This forces all outstanding I/O for a given file descriptor to be completed.

Asynchronous I/O is provided to allow queueing of IIO operations. This allows a process to per-

form I/O to a single file multiple times or to multiple files multiple times. Completion status may

be obtained by polling or by asynchronous event notification, and a process may cancel requests

before they are completed.

10.1.3.9 Real Time Files

Real time file specifications allow an application to specify the characteristics regarding how file

requests should be handled. At the time a file is created using mkfileO, certain flags may be set to

optimize performance for the application. Some of these flags are discussed below.

A contiguous flag indicates the file should be optimized for sequential access. For rotating media

this usually means sequential physical blocks to minimize head movement. Two types of flags ex-

ist. One indicating that a contiguous file is desirable. The operating system will assign a contigu-

ous file space if it can. The second is a flag that a contiguous file is required. If the operating sys-

tem can not allocate a contiguous file, the operation fails.

An advisory flag exists for random access. This implies the file will primarily be accessed random-

ly. Thus, the system will optimize the file for random access if possible. A majority random access

flag does not exist.

Flags exist for the use of cache memory. The application may specify the cache be optimized for

random or sequential access. There is also a flag indicating the cache will be of no use since the

data will not be accessed on a regular basis. The operating system need not use these flags.

10.1.3.10 Threads

A thread is a sequential flow of control within a process. POSIX defines a set of operations to al-

low for multiple threads in a single process. Threads provide an efficient way for a process to take

advantage of systems with parallel architectures. Each thread has its own thread ID, schedule pri-

ority and policy, and the required system resources to support a flow of control. A process using

multiple threads gives each thread access to most of the state associated with the process. An ap-

plication that uses multiple processes does not have this sharing of state. Also, the creation and

removal of a thread should be faster than creating and removing processes.

The thread section introduces the concept of mutexs. Mutex is derived from mutual exclusion, and

this is the capability it performs. Mutexs are similar to binary semaphores except they are defined

to work between threads within a process, not between processes. Another difference is the thread

Page 10-13 Workstation Executives

POSIX Standards
I I

that locks the mutex is the only thread that may unlock it. This is not true of the process that locks

a binary semaphore.

Mutexs work in conjunction with condition variables. If a thread holding a mutex determines it

can not proceed by examining data guarded by the mutex, it loops on a condition variable. Other

threads may alter the condition variable to allow the thread to continue execution.

According to Draft 8 used for this summary, mutex functionality may be added to the binary sema-

phore proposal.

10.1.4 1003.6 - Security

The POSIX 1003.6 standard defines an interface for security functions in a portable operating sys-

tem. The scope of this interface includes the definition of new system functions and commands

for the additional security mechanisms supported by the standard, as well as new, security-related

constraints and requirements for the functions and commands defined by the other POSIX stan-

dards. The P1003.6 security subjects and objects are identified, but no explicit policy model for

their behavior has been defined yet. The P1003.6 security policies are defined precisely, however,

and the correspondence between the interfaces and policy is demonstrated. The requirements for

trusted systems are drawn primarily from the Trusted Computer System Evaluation Criteria (TC-

SEC). The committee will consider other requirements of reasonable generality for inclusion into

the standard and will allow extensions that are consistent with the standard. Since the purpose of

the security standard is to provide for application portability between trusted systems, security re-

quirements in areas which do not pertain to application portability are not addressed. Functions

and commands which relate to Mandatory Access Control (MAC) are identified as part of a sepa-

rate option, which need not be provided or configured on all Conforming Systems.

Although the P1003.6 standard does not mandate a specific security policy model, it does define

functions and commands which may be used to support a number of types of security policies.

These types include:

• Nondisclosure - def'mes constraints upon the observation of information. Access con-

trol mechanisms are provided which allow for discretionary and mandatory constraints

on the reading of an object by a subject.

• Integrity - define constraints upon the alteration of information. Access control mech-

anisms are provided which allow for discretionary constraints on the writing of an ob-

ject by a subject.

• Accountability - Accountability policies define which user actions are auditable. Au-

diting mechanisms are provided for the collection and analysis of security-relevant

events on a per user basis.

The P1003.6 committee has just begun to define the actual contents of the security standard. At

this point, the standard defines the functions and commands which will support:

Discretionary Access Control.

Mandatory Access Control.

Security Auditing.

Least Privilege.

Object Reuse.

Page 10-14 Workstation Executives

POSIX Standards

• Object Import and Export.

Discretionary Access Control is provided by functions which support Access Control Lists on the

appropriate POSIX objects. Access Control Lists allow users to assign control attributes associated

with a security object or a group of security objects, an object being a passive entity that contains

or receives information. Access to an object potentially implies access to the information that it

contains. Examples of objects are: records, blocks, pages, segments, fries, directories, directory

trees, and programs, as well, as bits, bytes, words, fields, processors, video displays, keyboards,

clocks, printers, network nodes, etc. The control attributes which may be specified are attributes

associated with an object that, when matched against the security attributes of a subject, are used

to grant or deny access to that object.

Mandatory Access Control is provided by functions which support the labeling of subjects and ob-

jects, and by mandatory access control rules sufficient to enforce the TCSEC information confine-

ment policies. Additionally, all interfaces are constrained to avoid covert channels.

The requirements for trusted object reuse will be constraints upon those POSIX functions that al-

locate new objects or extend existing ones, rather than separate system functions and commands.

Trusted object import and export is provided by the inclusion of the security attributes in the file

headers defined for the POSIX Archive and Interchange utility (PAX), and by the optional inclu-

sion of file header origination and authentication fields.

Auditing is provided by the definition of auditable events with regard to the P1003.6 interfaces,

and by a standard audit trail record format and functions to write records to and read records from

the system audit trail.

Least privilege is supported by the definition of the privileges required for POSIX functions limited

to processes with appropriate privileges, and by mechanisms to associate these privileges with pro-
cesses.

10.1.4.1 Discretionary Access Control

The primary goal of POSIX in extending discretionary access control in the UNIX system is to pro-

vide a finer granularity of control in specifying user and/or group access to objects. The POSIX

approach to achieving this is through the addition of Access Control Lists (ACLs). Discretionary

Access Control (DAC) is a means for controlling access to an object based on the identity of sub-

jects and/or groups to which they belong. The controls are discretionary in the sense that they are

chosen by the object owner.

The DAC mechanism employed in the current UNIX System was designed for efficiency, flexibil-

ity, and ease of use. This mechanism allows and encourages the sharing of information, but at a

very coarse granularity, via the use of file permission bits. File permission bits are associated with

three classes: owner, group, and other. Access for each class is represented by a three-bit field

allowing for read, write, and execute permissions.

Although several methods exist for allowing discretionary access control on objects, ACLs were

chosen to provide a DAC mechanism with finer granularity than the current file permission bits.

It has been determined that the current DAC mechanism in the UNIX System is adequate for most

needs, and that the only enhancement required is to allow reasonable finer-grained control of ob-

jects. This provides the capability to allow or deny access to individually specified users and/or

groups and meets the B3-1evel requirements of the Department of Defense TCSEC.

Page 10-15 Workstation Executives

POSIX Standards

10.1.4.2 Mandatory Access Control

The overall goals of P1003.6 Mandatory Access Control (MAC) are:

• Address disclosure-based mandatory access controls to the POSIX interface standards

that fulfill appropriate, widely-recognized standards and criteria as defined in the over-

all scope for P1003.6. This will include the TCSEC.

• Define MAC interfaces for portable trusted applications, and specify MAC restrictions

on all other P1003 functions.

• Apply MAC to fulfill the appropriate standards and guidelines, yet provide as much

flexibility for implementation-specific MAC policies as is practical.

• Preserve the provision for POSIX conforming applications to impose "extended secu-

rity controls" as defined in P1003.1.

• Address MAC-related aspects for all forms of information access and transmission vis-

ible via the POSIX interface, including regular data channels (e.g., files) as well as co-

vert channels.

• Preserve full compatibility to base P1003 functionality among subjects and objects op-

erating under "single-label conditions."

• Add no new MAC-specific error messages to existing P1003.1 (and other) interface
standards.

• Define interfaces and formats for the interchange of MAC labelled information be-

tween conforming implementations. Define various standard MAC label format infor-

mation as appropriate.

An issue being considered for the MAC area of P1003.6 is that common features of UNIX systems

not in POSIX be included in the scope of MAC, for example, System V shared memory, sema-

phores, and message queues, or BSD sockets.

10.1.4.3 Audit

There are two principal auditing goals for P1003.6. They are portable audit post-processing appli-

cations and audit control for trusted applications. A third goal, implied by the other two, is that the

interfaces and definitions described in this standard be efficient enough to encourage widespread

implementation and use.

In order to provide portable audit post-processing, the standard needs to:

• Define standard portable audit trail formats that allow for implementation-defined

events and event information.

• Define a set of events that a conforming implementation must be capable of generating.

This includes both the conditions under which the events must be capable of being gen-
erated and the information to be included in those events.

• Define standard portable audit trail formats that allow for interoperability, so that audit

data can be portable among different machines, and so that audit data generation and

analysis need not take place on the same machine.

In order to provide for audit control for trusted applications the standard will:

• Define functions for generating audit records both by applications that are part of the

Trusted Computing Base (TCB) and by applications that are outside the TCB. Non-

Page 10-16 Workstation Executives

POSIX Standards

TCB applications are constrained to use interfaces that are guaranteed to provide cor-

rect subject identification and token format in the audit record. A privilege may be re-

quired for non-TCB applications to generate audit records (to be defined by the privi-

lege group).

• Define functions that allow the application to disable and enable events associated with

the actions of the application that are being recorded by the TCB.

The scope for security auditing will not include:

• Administration - functions and commands to support security audit administration are

excluded. These exclusions include the assignment of audit control parameters to spe-

cific users, and pre-selection by object.

• Audit control to detailed level - Functions that allow trusted applications to control pre-

selection to the detail of specific events or classes of events are excluded. However,

global control of pre-selection is included.

• Post-processing classes - the def'mition of a set of standard post-processing classes is
excluded.

• Audit data storage - the definition of formats and organization for permanent audit data

storage are not addressed, nor is there any required storage organization for a system's
audit trail.

• Audit delivery mechanism - the definition of a mechanism for delivering records to a

system's audit trail is not addressed, although the interface to this mechanism is includ-

ed.

Those functions which will be included in P1003.6 Auditing Functional Specifications can be

grouped as follows:

• Audit Record and Token Def'mitions - A standard audit trail format and conventions for

first user are defined.

• Audit Record and Token Interfaces - Standard functions for examining and creating au-

dit records are defined, as well as functions for examining and modifying individual to-
kens within audit records.

• Audit Control Functions

• Event Definition, Identification, and Content - Conforming implementations are re-

quired to be capable of generating specific audit events. These events, their identity and

contents, and the conditions under which they are to be generated are defined by invo-
cations of the audit macro in the Common DTLS.

10.1.4.4 Privilege

The P1003.6 Security Interface standard is currently defined to provide a number of commands and

functions for privilege protection. These include:

• Provide a common terminology for addressing the topic of privilege.

• Define the semantics of how process privileges are acquired and altered.

• Provide compatibility with existing setuidO, for future implementations.

• Define the system functions and commands necessary to support the development and

execution of trusted programs, consistent with the principle of "least privilege."

Page 10-17 Workstation Executives

POSIX Standards
I |

• Provide and solicit input to and from other groups regarding areas of common interest.

10.1.5 1003.8 - Networking

The POSIX 1003.8 Committee is addressing network standards to be included in POSIX. There

are four groups working on this effort. One group is working on ISO compliance. The other three

groups are working on areas not covered by the ISO standards.

The ISO group is developing programmatic interfaces which are not specified in the ISO specifi-

cations. The underlying functionality of the POSIX interfaces provide ISO compliance. A prob-

lem the POSIX group will have is that manufacturers have already developed their own ISO appli-

cations. Each will be trying to push the standard to their interfaces. Thus, the finalization of this

specification is still a long way from being complete.

One standard that all POSIX networking groups will adhere to is the OSI seven layer model. Ad-

vantages to this model are the ability to interchange layers in conforming networks. This allows

new technology to be inserted with minimal impact on the network. Also, a cost benefit is expected

due to faster system implementation, easier maintenance, and competition between vendors of sim-

ilar products. One other development is the consideration of the transport layer interface of SVR4.

The purpose of this would be to provide a standard interface to the lower layers of the seven layer

model. Then applications could be developed that will work with TCP/IP networks or ISO com-

pliant networks. This could help the transition from TCP/IP based networks to ISO compliant net-

works.

The first layer of the OSI model is the physical layer. This layer converts the physical interface

between devices and the rules for the data transfer. Several standards currently exist for this layer.
The most used are:

• CSMA/CD - Ethernet.

• Token Bus.

• Token Ring.

Several other standards will be adopted in the future. The most important of which is Fiber Dis-

tributed Data Interface (FDDI). This will allow high speed (100M bits per second) fiber optic
backbone networks.

The data link layer is the second layer of the OSI model and provides packaging of data for trans-

mission. Error detection is provided as well as the ability to activate, maintain, and deactivate the

link. The standard for this layer is IEEE 802.2. This standard has been adopted by ISO and GOSIP

and should be the POSIX layer two standard.

The third layer, the network layer, determines the data's route. It relieves the transport layer from

knowing anything about the routing required for the data to reach its destination. The connection-

less protocols have been emphasized in this layer by GOSIP. POSIX may endorse both connection

based and connectionless protocols or just the connectionless protocol. A connectionless protocol

provides the most general data routing. With a connectionless network layer, all higher layers may

specify connection-mode protocols which will work without a direct network connection.

The transport layer, layer four, provides a reliable mechanism for data exchange between different

systems. Data integrity is maintained in the transport layer. POSIX has specified Transport Pro-

tocol Class 4 (TP4) as the standard for this layer. This provides a connection based method of data
transfer.

Page 10-18 Workstation Executives

POSIX Standards
I

The session layer, layer five, establishes and synchronizes the communication sessions between

applications. It establishes and maintains the connection, called a session, between applications.

ISO has specified a session protocol. The use of the protocols depends on the applications in use.

The presentation layer, layer six, provides the translation required for the data format to be under-

stood by both applications. Its purpose is to resolve differences in data format. POSIX specifies

the ISO presentation protocol.

The application layer, layer seven, provides the interface between the user application and the net-

work. This allows the application developer an interface to the entire network without knowing

the details of the lower layers. Several standards have been created at this layer by ISO. It is as-

sumed that POSIX will address each of these standards as they are released. These include:

• Message Handling System (MHS).

• File Transfer, Access, and Management (FTAM).

• Associate Control Service Element (ASCE).

• Directory Services (DS).

• Virtual Terminal (VT).

• Network Management (CMIP).

• Job Transfer and Manipulation (JTM).

• Office Document Architecture/Office Document Interchange (ODA/ODI).

Below is a description of each protocol.

10.1.5.1 Message Handling System

Message handling system (X.400) is a mature protocol that has been implemented around the
world. The current version of the standard (1988) is over 2200 pages. X.400 standardizes four

major protocols for interconnecting components of a distributed message handling system. P1

specifies how two computers transfer messages to each other. P2 is a format specification for mes-

sages representing office memos. It allows for the submission, transfer, delivery, and retrieval of

messages. P3 specifies how one computer submits or takes delivery of messages from a computer

responsible for message transfer. P7 specifies how one computer submits or takes delivery of mes-

sages from a computer responsible for message storage.

10.1.5.2 File Transfer, Access, and Management

File Transfer, Access, and Management (FTAM) protocol allows applications to transfer files

across the network. The basic services provided by FTAM include:

• Reading a remote file.

• Write to an existing remote file.

• Write to a new remote file.

• Append an existing remote file.

• Read a record of a remote file.

• Write a record of a remote file.

FTAM uses a virtual filestore to allow uniform access to files. The virtual file store provides a uni-

form method of accessing the real file store. The FTAM implementation is required to determine

Page 10-19 Workstation Executives

POSIX Standards

a mapping between the virtual file store and the real file store. All applications access the virtual
file store for remote access to the real file store. Each real file store on the network will have a

virtual file store that allows remote access in a uniform manner.

10.1.5.3 Association Control Service Element

Association Control Service Element (ASCE) provides basic facilities for the control of an appli-

cation association between two applications that communicate with a presentation connection.

This control is limited to establishing, releasing, and aborting the association. Other applications

such as FTAM use ASCE for these services. Below is a summary of these services:

• A-Association - allows an application to establish an association with another applica-

tion entity. The two entities may identify themselves by a title and they may identify

themselves by specifying an application context. This gives each application an indi-

cation of the type of connection and allows negotiation of context if required.

• A-Release - allows for the orderly, negotiated release of the association.

• A-Abort - allows for an application entity to abort the association without negotiating

the release. There may be loss of data and the application entities are not informed of
the release.

• A-P-Abort - allows for an application entity to abort the association without negotiating

the release. The application entities are notified that the association was released. In

this service data may be lost.

10.1.5.4 Directory Services

Directory services 0(.500) allow the use of logical names in place of physical names and allow

alteration to the network without affecting network operation. X.500 provides these services to all

entities on the network. Thus, FTAM and X.400 will use the same directory services. Any con-

figuration changes in the network will be hidden from these applications.

X.500 provides three basic services:

• Name to name binding service - allows the binding of logical names to their physical

address. This is similar to a white pages listing.

• Name to list of names binding service - allows the binding of one name to multiple
names. This service is useful for routine of electronic mail and can be considered a

mailing list.

• Property to set of names binding service - allows a list generated by a given property.

This can be thought of as a yellow pages service.

10.1.5.5 Virtual Terminal

Virtual Terminal (VT) provides terminal emulation services. This is done by mapping real termi-

nal facilities to abstract terminal facilities. Thus far, basic character based mappings have been ad-

dressed, but bit-mapped facilities are being developed. VT also provides network wide terminal

emulation. This allows a VT-100 terminal attached to a VAX to use applications on an IBM that

assumes the terminal is a 3270. This is done at the time of establishing the terminal connection.

Each time a connection is established, several parameters are negotiated. Since the number of pa-

rameters may be large, profiles of the most popular terminals may be an important negotiation tool.

Page 10-20 _i _'_
Workstation Executives

P1201 - Windowing Standards Standards

10.1.5.6 Network Management

Network management is divided into Common Management Information Protocol (CMIP) and

Common Management Information Services (CMIS). They are not an ISO standard yet since they

are in draft modes. POSIX will probably not address network management until these documents

become standards.

10.1.5.7 Job Transfer and Manipulation

Job Transfer and Manipulation (JTM) is designed to support computer to computer communica-

tions for performing work remotely. JTM is optimized for background or batch processing. Load-

ing analysis and optimization is not provided by JTM.

10.1.5.8 Office Document Architecture/Office Document Interchange Format

Office Document Architecture/Office Document Interchange Format (ODA/ODIF) addresses the

problem of document interchange. A ISO standard file format (ODIF) will allow vendors to di-

rectly support one file format or develop one translation between their file format and the ODIF.

This will provide a common method of exchanging document files between different applications.

10.2 PI201 - Windowing Standards

With the widespread endorsement of X Windows many groups have formed to promote the devel-

opment and standardization of X. Though the X protocol was proceeding toward standardization,

the industry was not getting any closer to solving the problems of application and user portability.

The few windowed applications available had different user interfaces, and most vendors showed

no signs of committing to development of applications for windowed environments. Thus, the

IEEE Computer Society Technical Committee on Operating Systems (TCOS) approved the forma-

tion of the P1201 working group. The group was chartered to develop standards that would further

application and user portability in the X Windows environment.

Since this effort is based on the X Window System model of windowing, a brief description of X

is needed to indicate the need for standardization. The X Window System is a network window

system based on a client-server model, under which clients and servers can reside on computers

having very different architectures. X servers can service several clients simultaneously and, under

this arrangement, each client can control one or more windows on the server's display screen.

There are three essential components of the X Window System: clients, servers, and the X Win-

dow protocol. An X Window server is responsible for providing windowing services to clients.

The X Window protocol, at the very base of the system, is used to communicate between servers

and clients, which often run on different nodes of a LAN. Several different clients running on dif-

ferent nodes of a LAN can all use a single display server to interact with a user.

X Window clients are applications which use the X Window System to interact with the user. X

Window clients typically consist of several layers of software. Above the protocol layer sits the

API, commonly referred to as XLib, which provides a functional interface to the protocol. These

routines establish network connections with servers, compose protocol packets, transmit them to

the server, and receive replies.

The next layer of routines above Xlib provides routines which manage higher-level user interface

objects called widgets. A widget provides a specific user interface service. It has a distinctive vi-

sual appearance, and a well-defined response to user input. The X Intrinsics layer provides func-

tions which allow an application to create, modify and destroy widgets.

Page 10-21 Workstation Executives

P1201. Windowing Standards
I

Standards

The layer above the Xt Intrinsics is the toolkit layer, which is implemented using a collection of

widgets. This layer consists of a set of predefined widgets, which may be used by programmers in

building applications. Application writers can pick and choose from the array of widgets that a

toolkit offers, or construct their own custom widgets by directly using the X Intrinsics routines.

Several different widget sets are available to be used (Athena, HP, Open Look, and Motif). By

definition, the widget layer not only provides an API, but also presents a certain look and feel to

users.

A very important component of an application, though not a software layer, is the style guide. The

style guide describes the overall "look and feel" of an application that conforms to the guide. This

collection of widget looks and feels, along with more general interface characteristics, such as the

overall composition of the screen and the presence and placement of menu bars and icons, loosely

makes up the "style guide." Typical components of "look and feel" are:

• Overall visual appearance of the screen.

• Appearance and positioning of icons.

• Composition and layout of dialog boxes.

• Visual appearance of widgets.

• Opening and closing windows.

Another component of the style guide describes the feel or drivability of an application at a lower

level. It describes how each type of widget interacts with the user. Another way to describe driv-

ability is the set of user interface actions used to interact with widgets.

Two more layers which can be added above the toolkit layer are a user interface service layer and

a user-interface language layer. The user interface service layer provides services that are indepen-

dent of both the display and the look and feel; clearly it is not constrained by a particular window

system or a particular widget toolkit. Rather than referring to the display of a checkbox at a par-

ticular location on the screen, requests to this layer ask for the presentation of a binary-choice ser-

vice to the user and expect the final state of the choice to be returned. It allows developers to pro-

gram to a single, high-level service API that can run on the huge base of character-mapped displays

and on bitmapped screens.

The user-interface language layer provides programmers with the ability to construct Fourth Gen-

eration Language (4GL)-like user interfaces with the same productivity benefits attributable to

4GLs. While there is considerable debate in the industry about where it belongs, this service is

nonetheless useful. At the very least, a user-interface language specifies the contents and layout

of user screens and dialogs. It may also include a procedural description of possible responses to
various user events.

Two objectives that P1201 is focusing on are the development of an Application Programming In-

terface (API) standard for the toolkit layer of X and the development of a recommended practice

for drivability for user interfaces. A standard for drivability is important and useful because it con-

tributes to user portability, by allowing users to move easily between applications and systems

from different vendors. The IEEE P1201 committee currently consists of two working groups:

P1201.1 and P1201.2. P1201.1 is attempting to create a standard X Window System toolkit inter-

face while P1201.2 is looking at human factors issues relating to user portability across multiple
"look and feels."

Page 10-22 Workstation Executives

P1201 - Windowing Standards
I

Standards

10.2.1 Contact Point

The P1201 standard is sponsored by the Technical Committee on Operating Systems of the IEEE

Computer Society. For information, contact:

Secretary, IEEE Standards Board,

Institute of Electrical and Electronics Engineering, Inc.

345 East 47th Street

New York, NY 10017

10.2.2 Application Programming Interface for Program Portability

Windowed applications need high level services such as buttons, menus, scroll bars and edit fields

which are provided by user interface toolkits in the X Window System model. These common ser-

vices require specific procedural interfaces to programming languages so that applications that use

these services can be portable from one system to another. The development of such procedural

interfaces for application portability will be part of the work program for the standards group

(P1201.1) looking at Application Programming Interfaces (APIs).

Since P1201.1 was formed, both OSF and AT&T have developed their own toolkits, Motif and

Open Look. They have different APIs and implement different look-and-feel qualities. Much of

the work of the P1201 API group thus far has been devoted to deciding whether the working draft

of the API standard should be based on Open Look or Motif, or whether a combined approach

should be taken. The question is still open.

One solution to providing a common API across multiple toolkits is the adoption of a user interface

management system (UIMS). UIMSs axe intended to encourage the separation of a software sys-

tem into an application portion and a user interface portion. The application portion implements

the "core" functionality of a system, while the user interface portion implements the user interface

dialogue.

In a summary of the August 1989 meeting of the P1201 committee there was a report that signifi-

cant discussions were held concerning the use of user interface definition languages (UIDL)/higher

level Application Dialogue Interfaces (ADI) as a means of providing a standard API. As a result

of this discussion, a study group was chartered to look into the possibility of defining a standard

UIMS. In order to do this, the group defined the following process:

• Define the domain of the working group.

• Approve a standard reference model.

• Develop a set of requirements.

• Solicit technologies that address the requirements.

• Evaluate submissions and determine if any are adequate (with or without modification)
as a basis for a standard.

The long-term goal of the group is to create either a standard or recommended practice in the area

of user interface management systems. It is hoped that this effort will result in a standard API

which will remain constant across changes in user interfaces and user interface toolkits. The group

has currently completed the first two steps and has developed an initial set of requirements.

The following is the standard reference model for the study group:

• Layer 6 Application

Page 10-23 Workstation Executives

P1201 - Windowing Standards Standards

Lv.

• Layer 5 Dialogue

• Layer 4 Presentation

• Layer 3 Toolkit

This reference model is based on the standard Seeheim UIMS architecture. The numbering scheme

is used to correspond to the reference model used by the remainder of the P1201 group. The do-

main of the study group is currently defined to be:

• Define a standard application dialogue interface (between layers 5 and 6 in the refer-

ence model).

• Define a standard UIDL (layers 4 and 5 in the reference model).

• Define a standard binding mechanism for integrating toolkit level API's into the pre-

sentation layer (between layers 3 and 4 in the reference model).

The initial requirements for a standard UIMS as specified by the study group are as follows:

• Support a mixed control model. A mixed control model is one in which either the user

interface or the application can be in control. An Automatic Teller Machine is an ex-

ample of an application that is user interface controlled; a radar display is an example

of an application that is application controlled. A radar system that allows the operator

to modify parameters supports a mixed control model.

• Allow the development of applications which are independent of presentation or media

concerns. For example, a single application developed to the ADI must be portable

across varying X Toolkit implementations, windowing systems, and I/O technologies

(e.g., voice, text, and graphics).

• Be programming language independent. This may be accomplished by providing dif-

ferent language bindings (e.g., C, Ada, or FORTRAN).

• Support runtime requests from the application for the presentation of information to the

end user. This is necessary to support applications such as drawing tools, CAD/CAM

systems, and other interactive editors. The assumption is that the system designer can

not know apriori how many instances of particular object will need to be displayed at

runtime.

The UIDL must:

• Be powerful enough to support the def'mition of the presentation aspects of the interface

and dialogue behavior.

• Be able to describe dynamic behavior and in particular must be able to display and re-

move toolkit objects without application involvement. This is meant to support user in-

terface functionality such as cascading menus and direct manipulation.

• Be able to service dynamic requests for presentation services made by the application.

• Be toolkit independent; the language must not be tied to a single toolkit.

• Provide the ability to manipulate the toolkit objects defined in an arbitrary toolkit.

• Support the manipulation of generic toolkit objects which can then be linked to specific

objects in different toolkits.

The toolkit binding mechanism must:

Page 10-24 Workstation Executives

UNIX System V Release 4 Standards

• Be able to support multiple window systems (e.g., X, NEWS, PM, Mac).

• Be able to support multiple toolkits for a given window system (e.g., 1201.1, Motif,

OpenLook).

• Be able to support character based terminals (e.g., curses on a VT220).

• Be compatible with existing toolkit interfaces. This means that toolkits can be integrat-

ed into the UIMS without requiring modification to the toolkit API.

The UIMS study group is currently soliciting technologies which address the initial set of require-

ments. To date, the group has heard presentations on OSF UIL; DEC UIL; the Extensible Virtual

Toolkit developed by API Ltd.; the Serpent UIMS developed at the Software Engineering Institute

at Carnegie Mellon University; Ness, ADEW, and the Andrew Toolkit developed by the Informa-

tion Technology Center at CMU; and the TeleUSE UIMS developed at TeleLOGIC.

10.2.3 Drivability/Look and Feel

The efforts of the P1201.2 working group will also be focused on user portability through a spec-

ification for application drivability. Drivability can be characterized as the set of standard user ac-

tions used to invoke application capabilities. The drivability concept applies to a subset of a user

interface's look and feel, the screen icons. Consider a push-button, a common feature in almost

every Macintosh-like dialog box. As long as the push-button looks something like a button, users

will think of it as such, regardless of whether it has rounded edges or square, shadows behind it or

a pseudo-3D appearance. Of course, if someone made a button to look like a scroll-bar, there

would be a problem. But generally speaking, how the button works is much more important and

much less obvious to users than is the button's appearance. A consistent convention for function

is required so that toolkit writers have some guidance on how to program commonly used widgets,

such as buttons, scroll-bars, and edit fields, so that they respond to user actions in a similar and

perhaps standard manner. This convention is the focus of the drivability effort within P1201.2. It

can also be described as part of the feel of the application at a 'micro' level. Drivability is not con-

cerned with the appearance of the screen or how icons are opened into windows; it is concerned

with the user actions which are used to interact with toolkit widgets displayed on the screen.

Drivability is called out separately from look and feel, because a standard for application drivabil-

ity is the key to greater user portability. The concept of drivability is important in the network-

based X Window system because a user may be presented with windows from different applica-

tions and different systems simultaneously. While there is much room for creative variations be-

tween applications, the use of a set of common user interface actions enhances user portability and

decreases the chance of user error. If each of these systems uses a different standard for drivability,

the user would be very confused and would be quite likely to make a serious error. If however,

these applications conform to a standard for drivability, a user can switch between them with ease.

The two areas of application and user portability are linked together because the design and imple-

mentation of a user interface toolkit needs to reflect standard drivability considerations.

10.3 UNIX System V Release 4

System V Release 4 (SVR4) is the most recent release of System V (SVID) UNIX. This operating

system was developed by AT/" and Sun Microsystems and will be generally available in the first

quarter of 1990. SVR4 is the UNIX operating system defined as the "standard" by the UNIX In-

ternational (UI) Consortium. SVR4 is a merge of the best (in the interpretation of UI) features of

IIIII

Page 10-25 Workstation Executives

UNIX System V Release 4 Standards

System V Release 3, Berkeley Software Distribution (BSD) 4.3, and Xenix. SVR4 also includes

functionality from Sun's SunOS operating system.

SVR4 will compete for market share with the OSF/1 operating system being developed by the

Open Software Foundation (OSF). OSF/1 is primarily based on the Advanced Interactive Execu-

tive (AIX) operating system developed by IBM. OSF/1 will also use features from Mach for mul-

tiprocessor support. Mach is an operating system designed at Carnegie Mellon University.

Rather than comparing the two operating systems, this discussion will describe the advantages and

features of SVR4.

10.3.1 Contact Point

Implementations for System V Release 4 are available or planned for a number of computer sys-
tems. For information on the standard itself, contact:

UNIX International

20 Waterview Boulevard

Parsippany, NJ 07054

10.3.2 System Description

In the past, UNIX systems were somewhat non-standard due to the differences in the System V,

BSD, and other variants. SVR4 promises to eliminate this problem by merging the best features

of the three most popular UNIX variants. A summary of the major advantages of SVR4 are as fol-

lows:

• SVR4 offers a combination of the best features of the three operating system variants.

SVR4 also includes a number of features taken from Sun's operating system (SunOS).

• Applications developed in System V, BSD, and Xenix will be fully compatible with

SVR4.

• SVR4 is POSIX-compliant and will remain so as POSIX matures.

• SVR4 offers real-time capability.

• SVR4 is available on selected systems at this time. SVR4 will be generally available

on other systems during 1990.

• SVR4 is based on robust software technology and initial releases should be quite reli-

able.

By combining the best features of System V, BSD, and Xenix and adding new features from

SunOS, SVR4 provides an operating system which is compatible with applications developed in

any of these environments. This also allows SVR4 to provide a rich environment for development

of new applications. The remainder of this section will describe the combinations of features

which make up SVR4.

SVR4 includes and is primarily based upon features of System V Release 3.2. The provided fea-

tures include the following:

• Classic System V interprocess communications facilities such as shared memory, mes-

sage queues, and semaphores.

Page 10-26 Workstation Executives

UNIX System V Release 4 Standards

SVR4 also

following:

Streams - the System V mechanism for local and network process to process commu-

nication. Note that streams will be used as the basis for the implementation of Berkeley

sockets.

UNIX to UNIX Copy Program (uucp) - the System V mechanism for serial-based net-

work communications.

Transport Level Interface (TLI) - a programmatic interface which allows applications

to be independent of the underlying network transport protocol (such as TCP/IP or ISO/

OSI). This interface will be very useful for environments making the transition from

TCPflP to ISO/OSI.

Remote File System (RFS) - the System V network-based file system. RFS is similar

to the more familiar NFS, but is specifically geared to support of UNIX filesystems.

includes several useful features taken from BSD 4.3. The provided features include the

• The C shell - the familiar shell favored by most users for interactive use.

° The Berkeley fast file system - a file system which improves file access performance

via cylinder groups, larger block sizes, and use of a mechanism which maintains con-

tiguous files.

° Selected commands and system calls (including Berkeley signals).

° Symbolic links - which allow links to directories and to files/directories located on dif-

ferent file systems.

• Sockets - the Berkeley mechanism for local and network process to process communi-

cation. Note that the socket interface will be implemented with streams. This will have

a slight negative impact on performance.

° Remote (r*) commands - remote operation commands such as rcp, rdate, rlogin, rsh,

and others.

• The l.nternet services daemon (inetd) - which provides control of daemon processes

which access the Internet.

SVR4 includes a number of significant features of the SunOS operating system. The features in-

clude the following:

• Virtual memory mapping mechanism - supports memory mapped files, dynamic link-

ing (linking at run time), and shared libraries. Dynamic linking and shared libraries are

particularly useful as they:

Allow libraries to be changed without affecting the calling application.

Allow all executing applications to share one resident copy of a library.

Significantly reduce disk and memory requirements. This is particularly important when using
complex software such as X Windows and ISO due to multiple layers of large libraries. Shared
libraries also aid Reduced Instruction Set Computer (RISC) machines due to the increased size of
RISC executables.

• Network File System (NFS) - supports UNIX and non-UNIX network-based file sys-

tems. NFS is useful for sharing file systems and for support of diskless workstations.

• Remote Procedure Calls (RPC) - provides an OSI session layer interface for execution

of procedures (functions) on remote workstations.

Page 10-27 Workstation Executives

UNIX System V Release 4
III

Standards

• EXternal Data Representation (XDR) - provides an OSI presentation level interface for

exchanging data between machines with different architecures.

SVR4 includes a number of additional features which are taken from different operating systems

or are entirely new. These features include the following:

• Enhanced stream support - the performance of streams has been improved.

• Internationalization - multi-national language support.

• Virtual File System - an additional network file system taken from the Apollo operating

system.

• Korn shell - a new command interpreter which is a superset of the Bourne shell. The

Korn shell is completely compatible with the Bourne shell for both interaction and ex-

ecution of shell scripts. The Korn shell includes many of the useful interactive features

of the C shell and other new improvements as well.

• New mechanisms/interfaces for network selection, name to address mapping, and mail.

10.3.3 SVR4 Future Directions

UNIX International has provided a well-defined set of directions (called a road map) for introduc-

tion of new functionality into SVR4. This road map outlines the addition of support for enhanced

security, multiprocessing, and increased network support. Figure 10-2 summarizes these enhance-

ments and how they affect different areas of SVR4.

Page 10-28 Workstation Executives

ANSI C Standards

ii ii! i!iii iiiiii iiiiiiiii!iiiiiii!'
ii!iiiiiiii!i!iiiiii_dmi_|_i_i_i!iiiiii!iiii!iiiiil

_iii_i_i_i_i_ii!ii_iiiiiiiiiiiiiii_iiiiiiiiiiiiiiii_iiiiiiiiiiii!

iiiiiiii_:_i_iiiiiiiiiiii:_i_iiiii_iiiii_i_iiiiii_iii_i_!_:_ii_iiii_iiiii:_:_:_:_iii_i_:_:!_:_:i:i:i

iiiiiii!iiiiiiiiiiiiiiiiiiii!ii ili!i!iiiiiiiiiiiii!iiiii!iiiiiiiii
iiiiiiiiiii!ii!iiiiiiil;i !! i ' i iii;ii!iiiii;i!!!i!iiiii; i!i

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiii!iiiiii iiiiiiii!iiiii!iiiii

iiiiiiiiiiiiiiiiiiiiii !!i i / iiiiiiiiiiiiiiiiii iill
i!!!!!i!iiiiiiiii!i!iiiiiiiii_£i_Ni!ii!iiiii!iiiiii!!iii!iii!ii!ii!iiiiiiiii!iilii!i!_i!il{iiiiiii!!!iiiii_!i!i!i_iiiiiii_
i_iiiii_iiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iliiiiiiiiiiiiiiiii?i_iiiii[i?i_i!i!iiii:

!!!![!iiiiiiiiiiiiiNii i; i iiii!!iiiiiiiiiiii!
iii;iii;i;iii!iiiii!i!iii!iiiiiiii?iSNii

Mulfi-NafionM

Language

Support

Enhanced Local

Administration

TCPIIP,

NFS.
RPC

Security
Ready

Graphics-based
X Windows

V u_ual Memory,

VFS,
Real -Time

Capability

Added

Multi-Language
and

GUI Suppoa

Certified

B2 L_vd

Seamty

sw4 :
Multlproeessiag

Plus

I_nl't ance_

Malfi-Byt¢
Charac_,'r

Support

MulU-t'rocessmg
Kernel
Parallel

Processing API

L2omn3on

API for

Multiple
GUh

t'_le Manageanent and
Transaction

_ssing
Enhancements

_VR4

Network

Computing
Plus

lDIsLr1DuI._d Kesourog

Management and
Full Function

Net Management

Distributed

Multi-Processing

Pull l.)Lst rtbut ed

Applications
Suplxm,

OSI Support

Object

Management

Advanced

Real-Time

Figure 10-2 SVR4 Future Directions

The timeframe for the different enhancements is not known at this time. It is unfortunate that

SVR4 will concentrate on security in preference over multiprocessing, as muhiprocessing support

is very useful for real-time environments.

10.4 ANSI C

ANSI C has been selected as the C standard primarily for two reasons, portability and industry ac-

ceptance. Programs written in ANSI C will have an easier port than programs written in Kemigan

and Ritchie (K&R) C. The industry has widely accepted ANSI C as the C standard. This is being

demonstrated by the delivery of compilers based on the ANSI C draft standard.

10.4.1 Contact Point

X3 Secretariat/CBEMA

311 First Street, N.W. Suite 500

Washington, DC 20001

Page 10.29 Workstation Executives

ANSI C Standards
II

10.4.2 Status of ANSI C

ANSI C has not been formally accepted at the time of this document. All technical details have

been resolved, but procedural delays have kept the standard from being released.

10.4.3 Objectives of ANSI C

The developers of ANSI C have three objectives in their development. First is compatibility with

K&R C. Second is to include common language extensions in ANSI C. Finally, the committee is

concerned about portability.

10.4.4 Characteristics of ANSI C

This section briefly describes the characteristics of ANSI C. The major characteristic of ANSI C

is to provide a standard set of headers. This greatly increases the portability of code generated in

ANSI C. One other characteristic of ANSI C is the addition of function prototypes. This helps in

preventing errors in passing parameters in ANSI C code. Several other additions and changes have

been made to K&R C. They are summarized below.

10.4.4.1 Standardization of Libraries

A large effort of the ANSI C committee is to generate a set of library standards. A set of 15 headers

are included in the standard. This is a major improvement for portability of applications. K&R

did not specify headers and header files varied between manufacturers. The ANSI committee re-

solved these differences into one standard that is not controlled by a manufacturer. This alone is

justification for adopting ANSI C.

10.4.4.2 Function Prototypes

An important addition to the language is function prototypes. This allows the compiler to check

parameter types for consistency. Function prototypes are not required which allows K&R pro-

grams to compile with ANSI C compilers. A typical function prototype is:

function (char *, int, unsigned int *).

This forces any calls to function to pass the required number of parameters and the proper param-

eter types. An alternate method is to write the function prototype as follows:

function (char *output_string, int num_char, int *result).

This allows the programmer to include information on the parameter meaning in addition to the

parameter type. The above two examples are identical to the compiler.

10.4.4.3 Additions to K&R C

There are several additions to the language. Below is a brief list of the additions to the language:

• #error, #pragma, and #elif to the language.

• The void type.

• The keyword signed.

• The long double type.

• The const and volatile qualifiers.

• The enum data type.

Page 10-30 Workstation Executives

ANSI C Standards
I

10.4.4.4 Changes to K&R C

The ANSI committee did not completely keep compatibility with K&R C. Minor differences exist.

Some of the differences are :

• ANSI C allows the distinction between binary and text files, while K&R C does not.

• ANSI C does not allow macro redefinition while K&R allowed the redefinition but left

the behavior as implementation specified.

• ANSI C does not allow recursive macros.

• ANSI C allows <operator>= but not =<operator>.

• ANSI C does not allow int and pointers to be interchangeable.

• ANSI C allows white spaces around #.

• ANSI C changes some library functions specific to UNIX, such as kill() and unlinkO.

Page 10-31 Workstation Executives

Bibliography

Appendix A - Bibliography

[ALI86] Ali, J.K., and M.S. Haniff, "Designing a Real-Time Executive for a Labora-

tory Microcomputer," Intelligent Instruments and Computers, September/

October 1986, p. 232.

[ALON88] Alonso, Rafeal, "Sharing Jobs Among Independently Owned Processors,"

Proceedings of lEEE Conference on Distributed Computing Systems, May

1986, p. 282.

[ATLA89] Atlas, Alan, and Bill Blundon, "Time to Reach for it All," UNIX Review,

Vol. 7, No. 11, 1989, p. 49.

[BARA86] Baradello, C.S., and G. Carloni, "Generation of Real-Time Executive Sys-

tems," Electrical Communications, Vol. 60, No. 3/4, 1986, p. 259.

[BERE85] Berets, James C, Ronald A. Mucci, and Richard E. Schantz, "Cronus: A

Testbed for Developing Distributed Systems," Proceedings of IEEE Mili-

tary Communications Conference, October 1985, p. 20.4.1.

[BICK88] Bicknell, Paul A., "Software Development and Configuration Management

in the Cronus Distributed Operating System," Proceedings oflEEE Confer-

ence on Software Maintenance, March 1988, p. 143.

[BOTC88] Botcherby, K., Y. Trinquet, and J.P. Elloy, "Event Management and Ren-

dezvous Concept in a Distributed Real Time Operating System," Proceed-

ings of Distributed Computer Control Systems, September 1988, p. 43.

[BUEL88] Buell, Robert K., "The Application Of a Distributed Computing Architec-

ture To A Large Telemetry Ground Station," Proceedings of International

Telemetering Conference, October 1988, p. 57 I.

[BUTZ89] Butzen, Fred, "Porting to ANSI C," Unixworld, Vol. VI, Nos. 5/6, 1989, p.

105 and 109.

[CASE88] Casey, Thomas A., Stephen T. Vinter, D.G. Weber, Varadarajan Rammo-

han, and David Rosenthal, "A Secure Distributed Operating System," Pro-

ceedings of lEEE Symposium on Security and Privacy, April 1988, p. 27.

[CHAS88] Chase, Robert P. Jr., David B. Leblang, and Howard Spilke, "Parallel Build-

ing: Experience with a CASE System for Workstation Networks," Pro-

ceedings of lEEE Conference on Computer Workstations, April 1988, p. 2.

[CHEN88] Cheng, Pau-Chen, and Virgil D. Gligor, "A Model For Secure Distributed

Computations In A Heterogeneous Environment," Proceedings of IEEE

Aerospace Computer Security Applications Conference, May 1988, p233.

[CHER86] Cheriton, David R., "Problem-oriented Shared Memory: A Decentralized

Approach to Distributed System Design," Proceedings oflEEE Conference

on Distributed Computing Systems, May 1986, p. 190.

[CICI88] Ciciani, Bruno, Daniel M. Dias, and Philip S. Yu, "Load Sharing in Hybrid

Distributed - Centralized Database Systems," Proceedings oflEEE Distrib-

uted Computing Systems Conference, January 1988, p. 274.

Page A-1 Workstation Executives

I

[CLAU871

[DASG88]

[DEAN87]

[FERG88]

[FISH89]

[FITZ87]

[GING89]

[GURW86]

[HAGM86]

[HSU86]

[JENS82]

[KNIG88]

[KOVA87]

[LADD89]

[LEVI89]

I I

Bibliography

Clausing, Brian, "Designing a Master Executive for a Distributed Multipro-

cessor Avionics System," Proceedings of IEEE National Aerospace and

Electronics Conference, May 1987, p. 174.

Dasgupta, Partha, Richard J. LeBlanc Jr., and William F. Appelbe, "The

Clouds Distributed Operating System: Functional Description, Implemen-

tation Details and Related Work," Proceedings of IEEE Distributed Com-

puting Systems Conference, January 1988, p. 2.

Dean, Michael A., Richard M. Sands, and Richard E. Schantz, "Canonical

Data Representation in the Cronus Distributed Operating System," Pro-

ceedings of lEEE Conference on Computer Communications, April 1987,

p. 814.

Fergenson, Donald, Yechiam Yemene, and Christos Nikolaou, "Microeco-

nomic Algorithms for Load Balancing in Distributed Computer Systems,"

Proceedings of IEEE Distributed Computing Systems Conference, January

1988, p. 491.

Fisher, Sharon, "OSI Takes on TCP/IP," Unixworld, Vol. VI, No. 2, 1989,

p. 74

Fitzgerald, Ted, "Executive Functions," Systems International, September

1987, p. 97.

Gingell, Rob, "Shared Libraries," UNIX Review, Vol. 7, No. 8, 1989, p. 56.

Gurwitz, Robert F., Michael A. Dean, and Richard E. Schantz, "Program-

ming Support in the Cronus Distributed Operating System," Proceedings of

IEEE Distributed Computing Systems Conference, January 1988, p. 486.

Hagmann, Robert, "Process Server: Sharing Processing Power in a Work-

station Environment," Proceedings of IEEE Conference on Distributed

Computing Systems, May 1986, p. 260.

Hsu, Chi-Tin Huang and Jane W.-S. Lui, "Dynamic Load Balancing Algo-

rithms in Homogeneous Distributed Systems," Proceedings oflEEE Con-

ference on Distributed Computing Systems, May 1986, p. 216.

Jensen, E. Douglas, "Decentralized Executive Control of Computers," Pro-

ceedings of IEEE Conference on Reliable Distributed System Software,

June 1988, p. 141.

Knightson, K. G., T. Knowles, and J. Larmouth, "Standards for Open Sys-

tems Interconnection," McGraw-Hill, 1988.

Kovalev, A. S., G.I. Ksenda G. I., and R.B. Shaimardanov, "Design of Dis-

tributed Information Processing Systems in Computer Networks," Avtoma-

tika i Vychislitel'naya Tekhnika, Vol. 21, No. 2, 1987, p. 71.

Ladd, R. S., "Going from K&R to ANSI C," Dr. Dobbs Journal, Vol. 14,

No. 8, August 1989, p. 74.

Levitt, Jason, "In Praise of Korn," Unixworld, Vol. VI, No. 6, 1989, p. 67.

Page A.2 Workstation Executives

Bibliography

[LIN861

[LITZ88]

[LUK88]

[MANT88]

[MCCA89]

[MCCA89]

[MEHT89]

[ORIE89]

[PITr881

[PITT88]

[PLAU89]

[POPE81]

[PRAT85]

[SCHA86]

[SERL89]

[SIMP89]

[SIMP89]

Lin, Frank C. H., and Robert M. Keller, "Gradient Model: A Demand-Driv-

en Load Balancing Scheme," Proceedings of lEEE Conference on Distrib-

uted Computing Systems, May 1986, p. 329.

Litzkow, Michael J., Miron Livny, and Matt W. Mutka, "Condor - A Hunter

of Idle Workstations," Proceedings of lEEE Distributed Computing Systems

Conference, January 1988, p. 104.

Luk, W. S., Xiao Wang, and Franky Ling, "On the Communication Cost of

Distributed Database Processing," Proceedings of lEEE Conference on Dis-

tributed Computing Systems, May 1986, p. 528.

Mantelman, Lee, "Upper Layers: From Bizarre to Bazaar," Data Communi-

cations, Vol. 17, No. 1, January 1988, p. 110.

McCarron, Shane P., "Standards Report: ANSI C," UNIX Review, Vol. 7,

No. 7, 1989, p. 12.

McCarron, Shane P., "Standards Report: Standards and UNIX Security,"

UNIX Review, Vol. 7, No. 11, 1989, p. 21.

Mehta, Sunil, "Standards Report: User Interface and the IEEE P1201 Com-

mittee," UNIX Review, Vol. 8, No. 1, 1989, p. 14.

O'Reilly, Tim, "The Toolkits (and Politics) of X Windows," Unixworld,

Vol. VI, No. 2, 1989, p. 66

Pitts, David V., "Recovery in the Clouds Kernel," Proceedings of IEEE

Symposium on Reliable Distributed Systems, October 1988, p. 167.

Pitts, David V., and Partha Dasgupta, "Object Memory and Storage Man-

agement in the Clouds Kernel," Proceedings of IEEE Distributed Comput-

ing Systems Conference, January 1988, p. 10.

Plauger, P. J., and Jim Brodie, "Standard C," Microsoft Press, 1989.

Popek, G., B. Walker, J. Chow, and D. Edwards, "LOCUS: A Network

Transparent, High Reliability Distributed System," Proceedings of IEEE

Symposium on Office Systems Principles, December 1981, p. 169.

Pratt, Keith D., and Roy L. Sherrill, "Experiences with the Development of

a Real-Time Multiprocessor Executive in Ada," Proceedings oflEEE Na-

tional Aerospace and Electronics Conferences, May 1985, p. 672.

Schantz, Richard E., Robert H. Thomas, and Girome Bono, "The Architec-

ture of the Cronus Distributed Operating System," Proceedings of IEEE

Distributed Computing Systems Conference, January 1988, p. 250.

Serlin, Omri, "The Serlin Report: AT&T Strikes Back," Unixworld, Vol.

VI, No. 3, 1989, p. 33

Simpson, David, "V.4 vs. OSF/1: What's the Difference?," Systems Integra-

tion, May 1989, Vol. XXII, No. 5, p. 53.

Simpson, David, "Will the Real-Time UNIX Please Stand Up?," Systems In-

tegration, Vol. XXII, No. 12, December 1989, p. 46.

Page A-3 Workstation Executives

Bibliography

[STAL87]

[STAN86]

[STUM88]

[SUSS89]

[THEI88]

[THOM84]

[THOM89]

[VINT86]

[VANH89]

[WALP88]

[WANG87]

[WARI88]

Stallings, William, "Handbook of Computer-Communications Standards,"

Howard W. Sams & Company, 1987.

Stankovic, J. A., and D. Towsley, "Dynamic Reallocation in a Highly Inte-

grated Real-Time Distributed System," Proceedings of lEEE Conference on

Distributed Computing Systems, May 1986, p. 374.

Strumm, Michael, "The Design and Implementation of a Decentralized

Scheduling Facility for a Workstation Cluster," Proceedings oflEEE Con-

ference on Computer Workstations, March 1988, p. 12.

Suss, Warren H., "The Government Open Systems Interconnection Profile

(GOSIP)," Datapro Management of Data Communications, McGraw-Hill,

1989, p. CS93-107-401.

Theimer, Marvin M., and Keith A. Lantz, "Finding Idle Machines in a

Workstation-based Distributed System," Proceedings of IEEE Distributed

Computing Systems Conference, January 1988, p. 112.

Thompson, William B. Jr., "An Integrated Approach to Telemetry Ground

Stations Using Distributed Processing," Proceedings of International Tele-

metering Conference, October 1984, p. 371.

Thomsen, Kristine Stougaard and Jorgen Lindskov Knudsen, Tutorial: Dis-

tributed Software Engineering, 1989, p. 122.

Vinter, Stephen, Krithi Ramamritham, and David Stemple, "Recoverable

Actions in Gutenberg," Proceedings of IEEE Conference on Distributed

Computing Systems, May I986, p. 242.

van Halm, Rochelle, "Real-time in the Real World," Unixworld, Vol. VI,

No. 9, 1989, p. 58.

Walpole, J., G.S. Blair, J. Malik, and J.R. Nicol, "Maintaining Consistency

in Distributed Software Engineering Environments," Proceedings oflEEE

Distributed Computing Systems Conference, January 1988, p. 418.

Wang, Jingwen, "The Design and Study of the Kernel Executive for DRIPS,

a Distributed Real-Time Information Processing System," Proceedings of

IEEE Second International Conference on Computers and Applications,

1987, p. 208.

Waxing, W. M., and S.S. Sinor, "A User's Perspective: Distribute Architec-

ture Software Development," Proceedings of lEEE National Aerospace and

Electronics Conference, May 1988, p. 608.

Page A-4 Workstation Executives

Interim Report
I

This section includes the interim report given to NASA-JSC after the executive technology

survey and requirements definition phases were complete. The presentation includes information

on the Concept Executive and all executive systems, user interfaces, and standards surveyed.

Southwest Research Institute Page 1 Workstation Executives

j_i! ¸ i

n no g B

e,m_l eP

"- " - N _,o o

' _) " o . o _.() '_ll_a

_o

•_ _

olml

_iiiiiiiiii!i•
_iiiiiii!!iiiii!ii
iiiiiiiiiiiiii

_iii!iiiii!iiii¸
iiiiiiiiiiiiiiiiiiiiil

_iii!iiiii!i!iiiiiiiiiiiiiiiiiiiiii

ii!i!i!i!i!i!i!iiiiiiii!i!ii!!!!!!il

J_ if! ¸

oo

_ t

.___L "

Ti
Z

om" _ i

[] {I I

!
/
i

e___

ma

lU

m_

|

0

0
lil

m
ml

E

J_

iiiiiiiiiiiiiiiiii!i!iiiii!iiiii!iii!iiii!iiiill

mm

E

J_

_D

JU

I.i

L

c_

TN

E

iiiiiiiiiiiiii!iiiiiiiiii_iii@i¸iiiiiiiii;iil;iiiii!iiiiiii_iii_iii!iii_i_!i_iiiiiiiiiiiiii,iiiiiiiiiiiiiiiiiiiii!iiiii!iiiiiiiiiil:iiii!iiiii_iiiiiiiiiiiiiiiiii!iiiiliiiiiiiiiiiiiiiiiiiiiiiiiiii!!!i!i!i¸,

i i _ _ii_iiiiili__ i iliil
ii ii iii i i _ ,,!_ iili i

|itli_!ii_i!ii_iiiiiiiii!iiiiiiiiiiiiiiiiiliiiiiiiii___ii_i@_iiiiii_iii!iiiiiiiiiiiii_ii!i_ii_iiiii!iiiii_iiiiiiiiiiiiiii!ii!ii!i

b_ol_ o oL Iol '
=_ I__ I_ _ _ 1_1

0
• • • • 1. • •

omma

• • • • • • • •

e_

emu

o_

_ Z

em em

o_

o_

_m

°_

mu
_0

0

oo

om

emit

0

_oo_o z_
0

0 _ 0

• • • • • _ • • •

pn_

om

J

g _ x

_ _ = _

0

0w,o4

l tr_°_M4

c_

ol,-_

_x

TI

nl olu

| !

In

E E E _ ._

.. _

__._-:_ _ _-_ ._

L

Su

LI

mu

iml
u

oo

o_

om

|

o

o_

o_

_o

°

0

0

g

oo

e_

|

|

o_

o_

|

om

o_ _

_ °

Sl °_

L. • • • • •
_ _

ou_l

• _ _ _

___- ___• _

m

a<#.<_<_o.
L.

__= _
- _,.- ._ _ __

.-_ _ =o _

___- _ _ ._

*mmm

o_

J

am

_q

_ o__o_ _o_

j_ 00

w_ _o
o

eaumm o_l

o

_m

__.= _ _ S S _"

=

e_"_

oo

_ _'_ • • • • • •

om

oO

otto

oJnnl

_ v_._ • • • • • •

| O0

e_ml

_ mm_

°_ _

mml_ _O _

ml c_

t
q

ii
ii i

I i

ii

_D

+

++ _ __

•-=_ __ _=+_ _

r_

o_ _

,._.

I,

Z

Z

m

iii:ii_

U/
III
o

orO
_rO

_ _ o_

r__ = "_"

i i._-_" _ _ o o_

...-_ _ __ _-_
•_ .__ :_
'

o0

_. .o

0

II | | i

°_

•,-. _

-_ _'_

N_.._ _-

m_
!

i!ii!!iiiiiii
!i'iiii"ii! ii

_ 0

1,1

1,1

i i ii!i i ¸

ml
i

m r_

__ _ =_ _ = o_

___ °

____ eeee
0

mP j
m !
_d

i °

e_ _.8_. z _

0

_o

°_

0

| |

c,_ tO

0 t._ 0 ,'_ _ _

_ o

_q • • • _ • • • •

Z Z

eumm

oaunl

T,m
e_

_ • • • •

om

|
m

,,i _ " _")

_ om

=_

-o -o

,.,..: _ _ _
_ :::I_ • • • •

.jl_ i ¸

| |

__ _ ° • • ° ° • ° ° •

Graphic Software in the MCCU

Abstract

In order to satisfy the diverse graphics requirements of the MCCU, it will be necessary to

utilize several different graphics software tools. The key will be to use tools which are portable,

compatible with X Windows, and best suited to the requirements of the associated application.

From a high-level viewpoint, this will include a User Interface Language (UIL), an interactive dis-

play builder, and a graphic plotting�modeling system such as GKS or PHIGS.

1.0 Introduction

The graphics requirements of the Mission Control Center Upgrade (MCCU) environment are

quite diverse. The requirements range from simple text display to user interaction to complex 2 and

3-dimensional modeling. These requirements are most effectively satisfied with a combination of

graphics software tools, each utilized for those applications in which it is most appropriate.

Satisfying a diverse set of requirements and at the same time using standard graphics soft-

ware, has been a difficult task in the past. If portability was required, requirements were often met

by utilizing graphics software tools which were not ideally suited for the application. For example,

it is not appropriate to use a high-level graphics system such as GKS or PHIGS to display text or

present user interface objects (such as colored rectangles which change orientation when selected).

In the near future, all levels of standard graphics software will be available. This software is

already available, but in many cases is public domain and is unsupported. When all software is

available as supported products, it will be possible to meet all graphics requirements of the MCCU

with standard tools which are efficient for development and execution.

2.0 X Windows and Graphics

The foundation of all graphics generated in the MCCU will be the X Windows system. In the

near future, all graphics requests will ultimately go through the X Windows system, thus allowing

all graphic input and output to be transparently shared across the network. The X Windows system

consists of a client-server model in which every display is managed by an X Windows server. A

client communicates display requests to the server (which may or may not be on the same system)

via a standard protocol (the X protocol). Every graphics request, no matter at what level it was ini-

tiated, will ultimately be translated into the appropriate X protocols and routed to a server for dis-

play. This routing from client to server may be local or across the network, thus allowing graphics

to be generated on a host system (possibly a data or compute server) and then displayed on any
workstation in the network.

One problem with the X Windows system is that benefits of the standard protocol are only

realized when using graphics over a network. For local graphics interaction, the translation and

routing of the X protocol reduces the performance of graphics. Many vendors are addressing this

problem by using shared memory or some other fast medium for routing of client-server protocol.

This increases performance, as a medium such as shared memory is significantly faster than typical

network communication methods (TCP, ISO). However, overhead still remains due to the protocol
translations.

A more serious problem is that the X protocol currently supports only 2-dimensional graphic

functionality. Using 3-dimensional functions is difficult as they do not closely translate to available

X Windows protocols. To solve this problem, vendors of 3-dimensional software (such as PHIGS)

will cooperate with the X Windows system (work within its windows), but actually bypass the cli-

Southwest Research Institute Page 1 Software Executives

Graphic Software in the MCCU

ent-server routing and directly access the native system graphics. This allows local use of such

graphics software, but precludes its use over the network. Fortunately, a solution to this problem
is in the works in the form of standard extensions to the X protocol. These extensions are called

PEX (PHIGS Extensions to X). They implement 3-D functionality in the X protocol, thus allowing

3-D graphics requests to be efficiently processed.

3.0 Contents of the X Windows System

X Windows is a relatively new standard and as such, does not provide a complete set of the

desired (or required) graphics development tools. As defined by the X Consortium, an X Windows

system as provided by a vendor must provide the following applications and libraries:

• X Windows server,

• XLib library, and

• Xt library.

This combination of applications and libraries is not adequate to efficiently support all graph-

ics requirements. The Xlib function calls operate on a very low level and are quite difficult to use.

The Xt function calls define a standard whereby user interface objects (called "widgets') may be

defined and manipulated. It does not include any widgets or a higher level library for presentation

of user interfaces.

Note that another requirement for effective use of the X Windows system is a small set of

clients, including a terminal emulator, window manager, environment manipulation applications,

and other applications. Such clients are normally provided with an X Windows system, but are not

part of the standard as defined by the X Consortium.

To provide a complete set of graphics development tools, additional libraries and applica-

tions must be layered upon the Xlib and Xt libraries. These include the following:

• A library of widgets,

• a User Interface Language (UIL),

• an interactive display builder, and

• a high-level 2 or 3-dimensional plotting/modeling system.

The entire X Windows system including the server, basic libraries, and high-level tools is

graphically summarized in Figure 1.

Most users in the MCCU environment are familiar with the term widgets. Widgets are indi-

vidual user interface objects such as command buttons, menus, sliders, etc. Using the Xt library

and a set of widgets greatly simplifies presentation of user interfaces. Widgets operate at a high-

level and automatically handle typical window system requirements such as cursor redefinition, re-

sizing, and highlighting of active objects.

Although widgets may be directly used by the programmer, it will be more efficient to utilize

a UIL to define a client's display interface. A UIL allows a programmer to completely define a user

interface without actually developing or modifying code. This provides the following advantages:

• Significantly reduces development time,

• allows user interfaces to be rapidly prototyped,

• allows simple and global updates to be rapidly implemented, and

Southwest Research Institute Page 2 Software Executives

Graphic Software in the MCCU

X Windows Client

Display Builder

User Interface Language

Widget Library

Xt Library

GKS PHIGS

I

Xlib Lbrary

t X Protocol

X Server

Note: GKS and PHIGS provide their own user interface objects for the various

logical input devices supported. Ideally, the GKS and PHIGS implemen-
tations will utilize widgets and the Xt library to support such functions.

This of course will be implementation-dependent.

Figure 1 - X Windows Software Structure

Southwest Research Institute Page 3 Software Executives

Graphic Software in the MCCU

• separates user interface definition from actual code (important for CM).

Note that the final advantage is important as it will allow changes in the user interface to be

implemented without affecting the actual code. The UIL description would still be certified, but

this would be simpler than recertifying an entire application.

Although a programmer can design a user interface by "coding" in the UIL, it is more effi-

cient to utilize a tool which allows the interface to be interactively designed. This display builder

will allow the programmer to interactively select and place user interface objects (widgets) on a

blank form. The programmer is thus able to design and arrange the interface and receive immediate

visual feedback. The end result of this process is a Fie containing the corresponding statements in
the user interface language.

The final applicable graphics tools include 2 and 3-dimensional plotting and modeling sys-

tems. This includes GKS (Graphic Kernel System) and PHIGS (Programmers Hierarchal Interac-

tive Graphics System). From a superficial standpoint, the functionality provided by these systems

is the same as the low-level X Windows libraries. However, upon closer examination, these sys-

tems have a great deal more functionality. The primary advantage of these systems is that they al-

low objects (whether simple plots or complex models) to be defined and then scaled, rotated, and

transformed in other manners. For example, a 2-D model could be scaled to simulate it moving
closer to or farther from the viewer. A 3-D model could be rotated to view other sides or to view

affects of light on its different surfaces. Whereas in X Windows, integer device coordinates are

used, GKS and PHIGS allow floating point coordinates, the ranges of which are defined by the pro-

grammer. The transformations from these coordinates to the actual device coordinates require a

large number of floating point calculations. This amount of floating point processing makes the

overhead of using GKS or PHIGS too great for simple drawing applications, such as displaying
text, drawing lines, or presenting a user interface.

4.0 Meeting MCCU Graphics Requirements

Although the graphics requirements of the MCCU are quite diverse, they may be summarized
into a few categories. These include the following:

• Window-based user interface,

• high-performance, high-flexibility data-driven display, and

• plotting and modeling.

The key to meeting MCCU graphics requirements is to use the appropriate graphics software

for each application. Providing a window-based user interface is achieved by using the Xt library

and a set of widgets. Layered on top of this will be the UIL and the interactive display builder

which utilizes it. These tools will be used by all applications which present a graphic user interface.

This includes system applications (such as WEX) as well as user applications.

The display builder application (and underlying UIL) must be flexible enough to support all

MCCU requirements. This not only includes development of displays and placement of user inter-

face objects, but also a way for users to associate their data with output objects (widgets). For ex-

ample, the user may require some subset of data (real-time or other) to be displayed at a defined

interval. The output may consist of text and/or objects which graphically display results (such as

a dial, a gauge, etc). The widgets provided for this purpose must balance performance with visual

and graphic flexibility. For example, a widget must be provided to display and update a large num-

ber of data values (> 100) in a manner which does not unduly affect the performance of the system.

Southwest Research Institute Page 4 Software Executives

Graphic Software in the MCCU

Other widgets will be provided for less dynamic or volumous data, in which more graphic presen-

tation is desired (it is easier to recognize a critical condition by examining a graphic dial which is

approaching a marked level).

The combination of user interface and data demands make it difficult for any existing graph-

ics tool to satisfy the requirements. What is required is a general-purpose UIL and display builder

which allows development of client displays containing the required set of user interface widgets,

a number of which may be automatically driven by external data. Some of the existing or planned

systems which support a subset of this functionality include the following:

• Display Builder application developed by Ford Aerospace,

• the Data-Views drawing system,

• the Open Software Foundations (OSF) MOTIF system, and

• the Transportable Applications Environment (TAE)

Each of these systems has its advantages and disadvantages. SwRI's recommendation is to

use one of the systems (or an equivalent) and either modify it to provide all required functionality

or integrate it with other products to achieve the same goal. The end product of such a system

should be a language which is used by actual code to present the user interface and drive the display
of data.

The UIL and display builder will not satisfy all MCCU requirements. There will remain ap-

plications which must construct complicated graphic plots and/or models. For such applications, if

the requirements are too complex for one of the X Windows software tools, a system such as GKS

or PHIGS should be used.

There are two basic approaches for integrating GKS or PHIGS graphics into an X Windows

application. The first is for the application to exclusively use GKS or PHIGS and use their inherent

capabilities for user interface. As described in Figure 1, GKS and PHIGS provide their own user

interface functionality. However, using this approach will most likely (depending on the imple-

mentation) make the applications interface different from others in the environment. The second

approach would be to use the display builder to design a screen which includes a blank "canvas"

area, which may be as large or small as is desired by the programmer. This area will be used as a

virtual workstation into which the GKS or PHIGS output may be directed. In this approach, X Win-

dows functions will be used for user interface requirements. The second approach is preferable, but

requires additional functionality in the UIL and display builder.

In SwRI's understanding, the requirements for GKS or PHIGS are not common in the MCCU

environment. This however may change in the future and it does not make sense to design other

software which will preclude the use of these graphics tools. If the other graphics tools meet all

requirements, only a small subset of users will actually require use of GKS or PHIGS. Such in-

stances should always be reviewed to determine if the software is really necessary.

Note that there remains a decision as to whether GKS or PHIGS will be used for the related

requirements. Although the packages are conceptually similar, there are some major differences.

GKS is currently a more stable graphics standard. It is supported by more vendors and is signifi-

cantly faster than PHIGS. It provides adequate 2-dimensional capability for static display of graph-

ics. On the other hand, PHIGS is a relatively new standard and will by its very nature, be slower

than GKS. However, PHIGS provides 3-dimensional capability and more importantly, allows dy-

namic changes to images. When using GKS or PHIGS, a programmer will normally create a seg-

Southwest Research Institute Page 5 Software Executives

Graphic Software in the MCCU

ment (GKS) or structure (PHIGS) which defines some graphics object. In GKS, if that segment is

to be changed, it must be destroyed and then completely recreated with the required changes. In

PHIGS, it is possible to specify only the changes, thus making it more efficient for very dynamic

images.

A final advantage of PHIGS is that its described functionality will be added as an extension

to the X Windows protocol. PEX (PHIGS Extensions to X) will allow PHIGS graphics requests to

be directly implemented in the X protocol, thus improving performance and insuring that the

graphics will work over a network. In the case of GKS, the requests must be converted to the ap-

propriate X Windows protocol. Essentially, GKS is a good short-term solution for applications

which will not require 3-D or dynamic image functionality. PHIGS however, for the reasons out-

lined above, is a better long-term solution.

Southwest Research Institute Page 6 Software Executives

Comments on WEX 2.5 Preliminary Design

1.0 Overview

This document describes any problems (potential or otherwise) seen with IBM's Workstation

Executive (WEX) 2.5 preliminary design. The PDR document was divided into 12 sections and

several appendices. This document includes comments on the sections describing workstation

software. This includes the following:

Section # Section Title

1 System Overview

2 GPLAN/RTLAN

3 WEX

7 Data Acquisition

9 Configuration Management

11 2.5 PDR Systems Analysis

Note that no comments were generated for section 12 (CM Workstation), as this is a proto-

type for delivery 2.5. The described design appears to be sound, however there are details which

must be completed before this application can provide operational support.

The following sections of this document include general comments and then specific com-

ments for each applicable section. For sections providing specific comments, the page in the PDR

document is given and then is followed by the appropriate discussion.

General Comments

In general, the design presented by IBM is sound. Many of the concepts demonstrated by the

Hardware Independent Software Development Environment (HISDE) prototype were reflected in

the 2.5 design. From the 2.5 PDR, it is obvious that IBM is migrating towards a hardware inde-

pendent design. This is evident in the use of X Windows as the primary graphics software. In re-

cent versions of WEX, one of the primary problems is the dependence on proprietary graphics sys-

tems (namely MGI graphics). By removing dependence on this software and forcing users to do

the same is a major step toward writing portable code, as the majority of non-standard user software

is in the area of graphics use.

The 2.5 design also includes use oflSO standards as implemented by the RETIX corporation.

These ISO standards are based on the Open Systems Interconnection (OSI) reference model and is

an important step toward standard usage and communication over LANs. However, it is important

for IBM to recognize that such a move will initially cause problems due to existing software which

is based on other standards (namely TCP/IP). TCP/IP is relatively fast, reliable, and has a wealth

of application software which relies upon it. During the transition from TCP/IP to ISO, some

means of retaining these benefits must be retained. Users and developers will not want to lose fea-

tures such as network X Windows, NFS, EMAIL, and others, which currently work well over TCP/

IP.

There is concern about IBM's understanding of what is SVID UNIX and how it will be ver-

ified that their software is truely compliant. IBM should not state that their software is compliant

when it allows or depends on functions which are unique to Berkeley UNIX. IBM's design should

allow the user of non-SVID commands and features, but should constantly remind users that such

functions may not be available on other systems. Also, IBM's design should in no way depend on

any non-SVID commands or functions.

WEX Delivery 2.5 Page 1 Preliminary Design

Comments on WEX 2.5 Preliminary Design
I

The primary concern about the 2.5 design is that it is not completely hardware independent.

Although IBM states that the design is in fact hardware independent, there is no provision whereby

this will be proven (such as porting software to another workstation system). In addition, the basic

design is still dependent on a tightly-coupled processing configuration, in which there is no distri-

bution of data or processing. All computation (less that on the MASSCOMP IGP's) and data is res-

ident on the main CPU(s). This design is not flexible enough to support a true diskless node con-

figuration, in which each node has a significant amount of local processing power. The diskless

node approach is one chosen by many of the industry workstation vendors and cannot be ignored

if one is attempting to produce a hardware, vendor, and configuration independent system. This is

a difficult problem and one in which there are many opinions but only a few reasonable solutions.

2.0 System Overview Comments

Page 1-10

The document states that the 2.5 design is hardware independent. Again, this is not true, as

the design is neither vendor nor configuration independent. If the design is truely hardware inde-

pendent, then some plan to prove this should be devised.

3.0 GPLAN/RTLAN Comments

Page 2-4

Their is no reference to how existing TCP/IP-based services will be provided in the interim

before they are supported via ISO mechanisms. This will preclude use of services such as network
X Windows, NFS, UNIX EMAIL, etc.

Page 2-5

There is no indication of how many of the ISO layers are implemented in the UNIX kernel.

From previous discussions, layers 3 - 7 operate at the user level. This will may make communica-

tions extremely slow. IBM should be requested to provide benchmarks which compare movement

of data through existing and then the ISO communications routes. Note that it is unlikely that ISO

will ever be faster than existing methods, but there are steps that can be taken to improve perfor-

mance (such as placing more ISO software into the UNIX kernel).

Page 2-14

Why is it necessary for the user to format data into 8K blocks? While it is understandable to

maintain this functionality to be compatible with WEX 2.3, why not provide a new utility which
allows access in a more UNIX-like fashion?

Page 2-1.5

Is it true that LAN services do not require WEX shared memory? The shared memory seg-

ment allocated by WEX is quite large (about 0.5 to 1.0 MEG). It is unreasonable for a user to lose

resources to WEX shared memory if only LAN access is required. Separating the two services is

an excellent design idea, but care should be taken to avoid any dependencies between the two soft-

ware systems (such as LAN services requiring WEX shared memory services to determine flight
or operation mode).

Page 2-26

What is the purpose of "network parameters"? If these are upper limits, what will happen to
data which exceeds the limits?

I

WEX Delivery 2.5 Page 2 Preliminary Design

Comments on WEX 2.5 Preliminary Design

Page 2-31

Is the data saved by the network manager available for local display to the user? Also, is there

some sort of client which allows this data to be displayed in an interactive and meaningful manner?

Finally, can this data be routed to the Health and Status application?

Page 2-32

Will the f'fle transfer and access capabilities of FTAM allow use of wildcards and recursive

access of directories? Users will require the ability to copy the contents of entire directories and

hierarchies. This capability will also be required for WEX applications which move files to and
from the host and other workstations. If FTAM itself does not provide these capabilities, a set of

shell functions must be provided. These functions must be available for interactive and program-

matic usage.

There is no mention of how IBM's FTAM will honor normal UNIX file ownership. From ex-

perience, FTAM does not do an adequate job with file ownership. The ability to entirely enable/
disable workstation access is insufficient. Users will require permissions to be recognized on a per

file basis Oust like existing UNIX services provide).

Page 2-37

FTAM's honoring of the UNIX "other" ownership is inadequate. This precludes recognition

of user and group ownership.

Marking a file as "non-executable" is a good idea, but is by no means fail-safe. If the user is
able to write the file, he will be able to change the permissions on it, thus quickly making it exe-

cutable. If FTAM is the sole means of copying files over the network, it could be used to determine

if a file is truely executable (via examining magic numbers) and if so, prevent it from being copied.

This would be a reasonable location to place such security checks.

Page 2-43

The network test tools should be available for programmatic access. This would allow an ap-

plication to query the host and/or workstation before access.

4.0 WEX Comments

Page 3-4

WEX does not provide "vendor independent" applications software. If this is a primary goal,

IBM should modify their basic design to support other vendors and configurations.

IBM states that the user may use alternate shells, window managers, terminal emulators, and

other critical tools. This is acceptable during development mode, but during operational mode,

such applications must not be allowed unless they are certified. It also makes sense to only allow

use of standard applications during operational mode. This would further force users to develop

portable code and not depend on non-standard tools.

Page 3-5

WEX does not adhere to SVID UNIX. It depends on and allows Berkeley-specific tools (for

example, the document describes two startup sequences, one of which is unique to Berkeley

UNIX). It also does not specify any means whereby SVID compliance is to be verified.

ANSI C extensions should not be used until they become more universally accepted by work-

station vendors.

WEX Delivery 2.5 Page 3 Preliminary Design

Comments on WEX 2.5 Preliminary Design
I

Page 3-6

Stating that WEX applications "will run with or without the window manager" involves a sig-

nificant amount of functionality. This means that if a window is resized (larger or smaller), the cli-

ent will intelligently resize areas and fonts. This is not an automatic process (at least not "intelli-

gently"), as most "widgets" do a poor job of handling resize operations.

Page 3-7

WEX must not preclude the use of PHIGS. The current architecture, if used with true X ter-

minals or diskless nodes (treated as X terminals), may preclude use of PHIGS if the software by-

passes the X server. At the current time, much high-performance graphics software bypasses the X

server. The graphics software cooperates with the window system, but does not route display re-

quests through the X server. Instead, the underlying graphics libraries are directly accessed. This

is primarily due to lack of X protocol features for functions such as 3-dimensional rendering. In the

future, the X protocol will be expanded to support such functionality, but in the interim, such

graphics will not use the X server and therefore are not network transparent.

Mouseless mode is an interesting problem which may be solvable. It is definitely solvable
with access to server source code.

Page 3-8

WEX should provide a user interface language (UIL). This includes some sort of high-level

language for definition and separation of user interfaces. This language is accessed programmati-

cally and/or through an interactive display builder (such as that provided by TAE). Note that the

Display Builder application (as defined by FAC), is not general purpose enough to support this re-

quirement. A UIL would drastically reduce the amount of time required to develop WEX and ap-

plication user interfaces. Also, as the user interface specifics are separated from the actual applica-

tions, it makes it very easy to alter the interface.

Page 3-12

WEX does not support diskless nodes as separate processors. It only allows them to be used

as dedicated X Windows terminals. This would waste the local processing capability of the disk-
less nodes.

WEX will not be capable of supporting X terminals. Such devices have minimal graphics

support and rely heavily on the host (the MASSCOMP) for computation. Using X terminals would

place an unreasonable burden on the MASSCOMP (a burden which is currently relieved by the

dedicated graphics processors in the IGP's).

Page 3-14

If WEX is only going to run on the MASSCOMP 6600's and is SVID compliant, then why

are two start-up scenarios presented (one of which is not SVID)?

Page 3-18

Why is WEX shared memory allocated even if the user is not planning to use any WEX ser-
vice?

Page 3-19

The WEXTASKS f'de requires a new language. As an alternative, use standard UNIX servic-

es to provide the required functionality.

WEX Delivery 2.5 Page 4 Preliminary Design

Comments on WEX 2.5 Preliminary Design

Page 3-22

Is it possible for the user to send an advisory to a user on any given workstation? The docu-

ment states that an advisory may be sent to any tty, but not another workstation.

Page 3-23

If a user is logging into the system in OPERATIONAL mode, where is the login verification

data coming from? Is it the local CM process or from the host? This is most likely from the host,

but if local, some sort of extra security is required to prevent unauthorized access to the data.

Page 3-25

In the "xterm" window provided during login, it is not clear what application is running (it is

normally the shell). This is of course not reasonable during login. Also, the xterm window should
have a scrollbar to allow the user to review messages which have scrolled off the top of the screen.

Page 3-26

The document references "keyboard-to-button" mappings, which are assumed to be inputs

such as tab and cursor keys. Such mappings MUST be consistent from WEX application to appli-

cation. These mappings must be sufficient to allow a user to complete a screen without ANY

mouse interaction. It is very frustrating to be forced to use a combination of a mouse and keyboard

interface.

The keyboard mappings must also be provided to users so that they may make their own ap-

plications consistent with those in WEX.

Visually disabling buttons or fields is in many cases a costly and unnecessary action. It is nor-

maUy adequate to use a simple mechanism such as preventing the cursor from changing when it

tracks over a button. The best solution will depend on the user interface tools used (which widgets)

and how efficiently they handle such requests.

Will the user be allowed to selectively kill background processes, or will it be a "all-or-noth-

ing" action?

Starting up the users environment in the xterm window will be a problem, as some users will

not want to present an xterm window to their flight controllers. If users want an xterm window

available, have them specify it in the "xstuff" start-up file. Give the user a completely blank starting

point from which they may set up the environment.

Page 3-30

If a download or recycle is requested, will users on other terminals be able to prevent it from

occurring? If one user wants to enter a mode requiring such action, will it cause users in other

modes to be logged off?.

Page 3-31

Why are UNIX accounting files updated? Is this for security reasons? Using the UNIX ac-

counting process will use a significant amount of resources.

Page 3-36

All common WEX default resources (colors, fonts, etc) should be stored in the server so that

clients may be quickly initialized. Otherwise, the client will have to read and parse such data from

a file each time it is executed. Note that storing defaults into the server is made possible with the
"xrdb" client.

WEX Delivery 2.5 Page 5 Preliminary Design

Comments on WEX 2.5 Preliminary Design

Page 3-41

Is the "icon" button on every title bar really necessary? If the reasoning is to account for sit-

uations in which no window manager is running, then buttons for move and resize should be con-

sidered. It is not a good design to have application-specific buttons for such common functions.

This type of functionality is provided by other existing window managers. If IBM prefers a window

manager which places move, resize, iconify, and other widgets on each window, then one provid-

ing these features should be selected and agreed upon.

Again, how intelligent will the resizing action be? On many clients, the user will only want

to resize a portion of the window, such as that used for data entry or output (such as the message

area of the advisory client). Any client which uses a large area for display of a variable amount of

information should initialize separate windows (Xtoolkit shells). This allows the user to easily ad-

just the amount of text displayed.

Note that many simple messages (especially those requiring immediate response), are best

processed with popup windows.

All important messages should be output to the advisory window if it is currently active. Note

that local message windows are not useful if the advisory window is already present. They are only

really useful if large amounts of data must be displayed (such large amounts of data would clog the

advisory window).

Page 3-44

The document makes frequent reference to on-line help, but there is no sample screen nor any

real definition of the functionality to be provided. Will it be context-sensitive (more ideal) or more

of a window with "man" formatted data? An ideal solution would be to provide both types of help.

Is there a process which handles on-line help or is this a sub-function of all clients? It makes

more sense to separate this function, as it will make clients easier to develop. It also will allow cli-

ents to run in parallel with the user obtaining help (without forcing the client to worry about retain-

ing parallel operation). Note that this does make context-sensitive help more difficult to imple-
ment.

Will the local CM access functions be converted to X Windows? The windows shown appear

to be in a "curses" type interface.

What type of display interface is being used by the applications which are not being convert-

ed to X Windows? WEX cannot claim a consistent "look and feel" if there are applications which

use a different interface. Also, are these interfaces dumb screen I/O, curses, or MASSCOMP

graphics? All should be redone, but especially the MASSCOMP graphics, as this type of code is

completely non-portable.

Page 3-47

As a general comment, on prompts which request entry of a number in a limited range, it is

often easier to use a scrollbar to adjust the value. The best solution is to provide a text area in which

data may be entered directly and some sort of widget which allows mouse-based manipulation. Us-

ing up/down buttons (as shown in the example) are inefficient for wide ranges of data in which pre-

cision is still required.

Page 3-48

WEX Delivery 2.5 Page 6 Preliminary Design

Comments on WEX 2.5 Preliminary Design

How does the user acknowledge a message in the advisory client's window? What does the

"browse" function do? It should provide additional functionality such as search for text, display on

message type, sort, etc. The browse function itself should be integrated with the main window

functions (make window bigger to browse).

Page 3-54

What does the "registration" process involve? This implies that all WEX shared memory is

already allocated and the registration identifies the user to WEX, attaches the user to shared mem-

ory, and provides some resources (which the user may or may not need). It is not reasonable to al-

locate a large amount of shared memory unless the user uses the associated WEX services. Shared

memory and other resources should be allocated dynamically as required by the WEX services
used. If no WEX service is used, NO shared memory, message queues, semaphores, or other re-

sources should be allocated. A typical user may only require data acquisition services and should

not lose resources due to requirements of undesired services and applications.

Page 3-55

Most users sophisticated enough to use "message queue utilities", "interprocess communica-

tion utilities", and "shared memory buffer utilities" will neither require nor desire automatic initial-

ization. Again, all WEX resources should be dynamically allocated and only when requested by

the user. Why should a user lose a large amount of memory if he only needs to use a simple service

(such as outputting an advisory message).

Page 3-56

What is the provision for returning resources after an application terminates unexpectedly

(without calling EXwexterm)?

Page 3-62

Why is the "su" command provided? While a user may want to "su" to another user (other

than root), it still implies that the users will have root access. If this is so, there cannot be any rea-

sonable CM, no matter how stringent the policies are during operational mode (short of download-

ing the entire system).

Page 3-63

What is "proper security"? Is this a dependence on procedural control? Allowing a user to

read in data allows import of executable files. It may be necessary to "front-end" any and all such
commands.

There are a number of commands listed which could be dangerous during operational modes.

For this scheme to work effectively, strict permissions must be maintained on all files.

5.0 Data Acquisition

Page 7-9

The user interface presented is inefficient in its use of display space. The areas for "Active

MTM streams", "Active Positions", and pop-ups should not be static. It is better design to have sep-

arate windows which are popped-up as required (in the same manner described for local message

windows).

Page 7-14

WEX Delivery 2.5 Page 7 Preliminary Design

Comments on WEX 2.5 Preliminary Design

Why is the Uniform Network Interface not used for both LAN's (GP and RT)? Will the user
be allowed to access the GP LAN via this set of tools?

Page 7-15

Is it guaranteed that the WEX shared memory is not required for LAN access? It appears that

WEX shared memory is required to log in, so there is nothing gained by separating the resources

used by the two services (other than one allocation being static while the other is dynamic).

6.0 Configuration Management

Page 9-6

Will the "Workstation Processor ID" adequately differentiate between different types of pro-

cessors for a given vendor (MC5500 vs MC6600)?

An element will need to indicate for which release of the operating system it has been loaded

for. It will also need to indicate the release of other major software, such as graphics, WEX, X, etc.

Page 9-12

How is the "integrity check" performed? What is the baseline against which data is com-

pared? Is it simply update dates or some sort of checksum? Either way the baseline data must be

resident on the host or protected from user access.

Is it possible for users to modify the permissions (make executable) on files in the operational

area? If so, the user could easily make executable, a file which appears to be a normal binary data
file.

Page 9-13

What does "linked into the operational area" imply? Does this mean (in the UNIX sense) that

links are established to existing files somewhere else on the file system?

Are all executables downloaded or just those not already on the disk? If an integrity check is

performed (and the check is dependable), is it necessary to download files which already exist? A

complete download makes sense from a security standpoint, but will take a significant amount of

time to complete.

Page 9-14

The described file tree indicates that the "chroot" command will be used. In such a scenario,

many of the common areas (usr, bin, dev, etc) will have to be duplicated. Again, this makes sense

from a security standpoint, but will waste disk for areas which are identical for all operational
modes.

Page 9-26

The element information includes the "setuid" permission. Is it possible to set this bit and set

application ownership to root, thus allowing the application to access the system as if it were su-

peruser?

Page 9-38

How will "reads of executables" be prevented during operational mode? It appears that the

"cpio" and "tar" commands will be available and they allow such operations.

Page 9-39

WEX Delivery 2.5 Page 8 Preliminary Design

Comments on WEX 2.5 Preliminary Design

Is it likely that a user would ever initiate an integrity check? This might be used if the user is

encountering a strange problem which he suspects is due to out-of-date code or system data. In such

a case, a more useful feature might be a simple check which examines the revisions of OS, WEX,

graphics, and applications.

Page 9-41

Again, how is an "uncertified" program found? How dependable is the method used to deter-

mine if a file is an executable? Is it simple permissions, magic numbers, or actual file content?

Page 9-44

This screen shown for CM does not indicate that it will be ported to X Windows. Does this

mean that an existing curses (or something else) interface will be retained?

7.0 2.5 PDR Systems Analysis

Page 11-6

The cumulative MIPS figures indicate that the Flight Support Host will be used near its pro-

cessing capacity. Expecting a system to have adequate performance and response after 75% load
is unreasonable.

Page 11-20

Which release of X Windows was used for the benchmarks? MASSCOMP has released ver-

sion 1.1, which is significantly faster than release 1.0 (Note that both are based on the MIT X11

Release 2 X Windows).

The table indicates that the Display Manager uses X Windows. Is this really the case, or will

this application still use GKS as its primary graphics resource? Note that if it uses GKS, it may be

slower than X Windows (depending on the type of fonts displayed).

Page 11-24

The document states that "6.4 MIPS" will be provided for user applications. This assumes

that the machine is capable of efficiently providing 100% of its maximum rating processing capa-

bility. This is unreasonable, as when more and more processes are executed, an increased amount

of processing is lost to system overhead; therefore the "6.4 MIPS" number is optimistic.

WEX Delivery 2.5 Page 9 Preliminary Design

Comments on WEX 2.5 Critical Design

1.0 Overview

This document describes any concerns (potential or otherwise) seen with applicable portions

of the 2.5 critical design. This document concentrates on sections 5 and 6, which deal with WEX

and local Configuration Management.

2.0 WEX Comments

Page 5-6

The term "vendor independent" is misleading. Although software is based on standards, it de-

pends on a configuration which is quite unique within the workstation market (that being MASS-

COMP's).

The document states that "WEX services will be provided on an optional basis". Is this abso-

lutely true or do major applications like data acquisition and configuration management require ini-

tialization of WEX before they will operate properly?

Providing a "uniform look and feel" encompasses a broad area of user interface. For this

statement to be accurate, a well defined standard for colors, menus, title bars, widget use and place-

ment, keyboard mapping and other aspects must be defined. A functional standard for the user in-

terface should be designed, presented in the form of a prototype, and used for all applications ex-

ecuting on the workstation. Note: will applications from other contractors have a different appear-

ance? This will be a problem for users.

How significant is the requirement for ASCII terminal support? Will all WEX clients also

provide ASCII (curses) interfaces or is ASCII support primarily intended to insure that dump ter-

minals are controlled by WEX? If users are to work from an ASCII terminal, full support from

clients is required.

Page 5-7

The document states that SVID UNIX will be used. How will compliance to SVID be veri-
fled?

The document makes the statement: "single software architecture will be used across multiple

hardware platforms". What platforms (other than the MASSCOMP) will the software be executed

and used on? What are the plans for demonstrating this capability?

The "tightly-coupled, multi-processor, shared memory" approach requires a specific, some-

what non-standard workstation configuration. The only other configuration which this design sup-

ports is use of workstations or X terminals as dedicated displays. However, even this configuration

is in jeopardy, as TCP/IP (upon which X depends) is not available on the GP LAN. Also, has it

been demonstrated that the shared memory approach is the only one which is feasible? Has it been

proven that a distributed concept using the network would in fact be too slow?

Page 5-8

Using the "uwm" window manager is normally a good choice as it is robust and has little im-

pact on the user environment. Unfortunately, uwm is markedly different from the window manager

used by MOTIF (towards which WEX will migrate). Much of the MOTIF "look and feel" is due to

its window manager, which places a number of objects (for iconify, resize, move, expose, etc) on

every window present on the display. This is the primary means whereby a user manipulates win-

dows, whereas uwm depends on pop-up menus and user-defined "hot-keys" to provide similar

WEX Delivery 2.5 Page 1 Critical Design

Comments on WEX 2.5 Critical Design

functions. The point is that if the migration is towards MOTIF, it is advisable to select a window

manager which eases the transition.

What does the statement "applications designed to run with or without the window manager"

imply? It is assumed that this implies addition of functionality to allow windows to intelligently

react to asynchronous window events, such as resizing, movement, and exposure. This functional-

ity is expected and is not complete unless each window is able to "intelligently" deal with such

events.

Although WEX does not "preclude the use of TAE", it is not understood why a tool like TAE

is not used for development of the user interface. This would make prototyping much easier and

allow rapid implementation of changes. Although it may prove difficult to learn TAE and port cli-

ents to it, this may save time in the long term and improve the quality of the WEX user interface.

Page 5-9

When running an X terminal (or a workstation as such), the server will be resident on the dis-

play processor. The statement "WEX is limited to managing X servers on resident workstation" in-

dicates that this configuration would be impossible to use (assuming TCPAP or some equivalent is

available for X protocol communication).

The statement "Majority of WEX/WSA applications are designed/implemented to employ

the X Window System" is confusing. Does this imply that some clients will not use an X Windows
based interface and will use an ASCII based interface instead?

Page 5.13

What is the timeframe for migration to MOTIF? Will this be part of the 2.5 delivery or will

it be included in 2.7? With as much attention as MOTIF receives in this document, it appears that

it will be part of 2.5

Page 5-14

Use of the HP widgets is rationalized by referencing use by TAE, yet TAE is not used for

WEX user interface development.

The statement "By ensuring that our clients do not have dependences on a particular Window

Manager" is incorrect, as presentation of title bars depends on the window manager not presenting
its own title bars.

The document states that users will be allowed to use their favorite window manager. This

will make the design of WEX clients more difficult as they will have to determine whether or not

it is necessary to present title bars.

For more information on these points, refer to the discussion under the heading of "Page 5-
2"°

Page 5-15

The diagram indicates that 250K of shared memory is required for "WEX buffers". Why is

so much memory required? What is the breakdown of memory in this requirement. Is this memory

statically allocated?

Page 5-22

WEX Delivery 2.5 Page 2 Critical Design

Comments on WEX 2.5 Critical Design

Will all WEX clients (and applications) include processing to handle the SIGTERM signals

sent during the recycle process? Typically an application includes signal processing code to trap

and process such signals. If not present, the application will simply terminate without cleaning up.

Page 5-27

The document states that 60K of shared memory is allocated (in addition to the 250K) for

each advisory terminal. Is this memory statically allocated or dynamically as required by the mes-

sage load? Why is it necessary to save messages in memory? Once messages are displayed,

couldn't they be saved in a file? This would save memory and still provide good response for oc-

casional viewing of older messages.

Page 5-33

It appears that the EXitdaemon is required to clean up after users who do not terminate their

attachment to WEX. A more effective approach may be to have these checks performed asynchro-

nously (during a EXwexinit call) rather than cyclicly.

Page 5-35

The document states that "the mouse will not be required to login". Will all clients provide

equivalent keyboard functionality so that users are not forced to use the mouse?

Page 5-38

Are the Tab/Return and Cnrl/Shift/Return function key mappings available for all WEX cli-
ents?

Page 5.43

Why is UNIX accounting initialized? UNIX user and process accounting adds overhead to

normal system operation. This function should not be used unless there is a requirement for the ac-

counting information.

Is the user notified of UNIX mail, the ISO X.400 mail, or both? Is the user even allowed to

use regular UNIX mail due to the new mail system?

Page 5.45

Why are background processes killed on an "all or nothing basis"? Why is the user not al-

lowed to kill some processes and leave others running?

Page 5-50

Note that by changing some defaults, users can dramatically change the operation of their

own and WEX clients. For example, if password text is hidden by using the same foreground and

background text color, the user can override this and thereby cause the text to be displayed.

Page 5-52

It is noticed that the WEX user interface includes a standard title bar. This is an excellent idea

when using a non-obtrusive window manager such as uwm (or when not using a window manager

at all). Unfortunately, this title bar will be redundant when other window managers are used, as

they present their own title bars along with a subset of common functions. For example, consider

the following example which shows a clients appearance with the uwm window manager and then

with the MOTIF window manager:

WEX Delivery 2.5 Page 3 Critical Design

Comments on WEX 2.5 Critical Design

Appearance (uwm)

X] Client's Name [?

Appearance (MOTIF)

m

,_ Client'sN eI"m
X Client's Name ?

As this example shows, the title bar and some functions become redundant with the MOTIF

(and most other common) window managers. A solution is to mandate that all users use one win-

dow manager and design the clients accordingly. In this case, you could force all users to use the

uwm window manager and present a title bar in each client. Alternatively, you could force all users

to use a different window manager (rtl, twm, awm, etc) and assume that the title bar and function

responsibilities will be handled by the window manager.

If it is decided that users may use the window manager of choice, then WEX clients should

sense the window manager running and present the appropriate interface (whether or not to present

a title bar).

In this discussion of title bars, the important point is that all clients have a standard appear-

ance and that common functions are always located in a consistent location. More important than

the title bar is the location of common client-specific functions such as terminate and help. It is not

necessary for clients to handle operations such as iconify, as this will be handled by the window

manager. Rather, a client should present standard functions which are client-specific. It is especial-

ly important for an client to present its own terminate function, as using the standard window man-

ager function will often send an unexpected "terminate" or "kill" signal which is not adequately
handled.

If all WEX clients are to present a title bar, it is suggested that it appear as shown below:

ixl clientsNoo I?l
Where: "X" - Terminate client function

"?" - Help function

In the instances where a title is not required, the terminate and help functions should be pre-
sented in a standard location.

WEX Delivery 2.5 Page 4 Critical Design

Comments on WEX 2.5 Critical Design

Does "application busy clock" indicate that a client is active or process-bound (not available

due to processing)? A more common means of achieving this is to change the mouse cursor to an

image indicating that the application is busy (hourglass, watch, etc.).

It is not clear what scheme will be used to display local messages. Will each client have its

own message area (not recommended) or will pop-up windows be extensively used? For clients

with a large amount of output (especially multi-line output), special-purpose output windows are
advised. For normal output, pop-up windows are preferred (note that pop-ups must not halt opera-

tion of critical applications).

All WEX clients should adopt a standard mechanism for presenting user commands. This

could be via a command line at the top of the client from which pull-down menus are accessed.

Another option is to place all available commands as buttons along the top or side of the screen.

The decision should be based on what users prefer, what is handled well by the HP widgets, and

what interface is used by MOTIF.

Page 5-54

The document indicates that several applications do not require changes (no port to X Win-

dows). Is this because the applications have no user interface? If they do have an interface (and are

not temporary applications) then they should be ported to X Windows.

Page 5-56

How are the "shift change" and "update rate" pop-up windows selected from the information

client?

Page 5.57

If iconified and an advisory is received, will the advisory client become active and display

the message? This feature should be available and it should be possible to enable and disable it.

Page 5-61

The WEX Host/Flight list should be a function of the information client. The information cli-

ent should provide this information as a pop-up window.

Page 5-64

What is the raw format of the help text? Will it be the same as that used for UNIX "man"

(re'off with -man macro support) or in straight text format? If in man format, the text could be

viewed via the command line. Note that help on clients should be available via the command line.

This allows users to access help via familiar utilities.

Is the help text context-sensitive or will the user simply get a large amount of text which must

be scanned?

Page 5-71

It appears from this discussion that WEX services are required if the user needs "LAN access

utilities". Does this include real-time data acquisition? Some users may require data acquisition but

not the full set of WEX services.

3.0 CM Comments

Page 6-11

The document states that files which cannot be linked across file systems will be copied. Files

across file systems can always be linked with "symbolic links" (also called soft links).

WEX Delivery 2.5 Page 5 Critical Design

Comments on WEX 2.5 Critical Design

Page 6-13

The document states that the "chmod" command is front-ended to prevent making a file ex-

ecutable. What protection is used to prevent the programmatic call from performing the same func-
tion?

Page 6-29

The user interface for the EXcmmenu client wastes a great deal of screen space. Also, the

commands appear to be placed in an awkward location.

Pages 6-31 - 6-36

These pages present several of the windows used by the EXcmmenu client. Note that the user

interface for each of the CM sub-functions uses a different approach for presentation of commands.

Page 6..43

The document describes the "replace" option for download via a CDL. Does this option apply

to the entire download as a whole or can it be responded to for each individual file?

Page 6-63

Why is no X Windows interface provided for the EXcm_copy and EXcm_erase functions.

Also, will any command line interfaces be provided for the functions provided by EXcmmenu?

Page 6-68

The workstation initialization status display is a good idea, but why is the information pre-

sented in a special client. At this point, the xterm window (presented at login) should be available

for display of these messages.

WEX Delivery 2.5 Page 6 Critical Design

Review of POSIX 1003.4 and 1003.6

1.0 Introduction

This section includes two reviews of the proposed IEEE Portable Operating Systems Inter-

face Definition (POSIX) working drafts for real-time (1003.4) and security (1003.6) extensions.

This review process involved detailed analysis of the current drafts and comparison with the ex-

pected requirements of systems used in the Upgraded Mission Control Center (MCCU) at NASA-

JSC.

2.0 Review of POSIX 1003.4

This effort involved a detailed analysis of the proposed POSIX 1003.4 working draft and gen-

eration of comments for instances in which the functionality did not satisfy the expected require-

ments of workstation executive software used in the MCCU. At the time of this analysis, NASA

was generating an Operating System Interface Definition (OSID) document. The OSID specifies

all interface and functional requirements for the operating systems used for NASA-JSC systems.

The OSID primarily consists of a collection of requirements taken from other specification docu-

ments (such as POSIX). The comments generated by SwRI were in the form of OSID worksheets,

which were to be used by NASA representatives to attempt to add or alter functionality specified

in the POSIX 1003.4 draft in order to satisfy the requirements of the OSID.

3.0 Review of POSIX 1003.6

This effort involved a detailed analysis of the proposed POSIX 1003.6 working draft to de-

termine if all functionality specified in the NASA-JSC Automated Information Security Plan (AIS)

was satisfied. SwRI generated comments for any requirements which were not addressed in the

POSIX 1003.6 draft. SwRI also generated comments on security requirements which were consid-

ered best addressed by manual procedures rather than with automated procedures.

Southwest Research Institute Page 1 Workstation Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl..._.ge

Optional features in POSIX 1003.4.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

1003.1 Paragraphs(s)

1003.4 Paragraphs(s) Global

1003.6 Paragraphs(s)

1003.8 Paragraphs(s)

Other Paragraphs

[]
[x]
[]
[]
[]

Subiect(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

Description

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[] 8. LPC

Classification

[] OK
[] Modification of Strictly Conforming POSIX

[x] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[x] 12. Other

All of the major functions of POSIX 1003.4 are termed "optional". By definition, a strictly

complying POSIX 1003.4 implementation would only be required to provide the functional inter-

faces (as opposed to any actual functionality).

Resolution

Add a new implementation definition which identifies a POSIX 1003.4 implementation

which provides all listed functionality.

Rationale

Adding a new definition would reduce confusion for individuals trying to procure a system

on the basis of POSIX 1003.4 compliance. The current def'mition may mislead individuals into pro-
curing systems which do not adequately meet all requirements.

Southwest Research Institute Page 1/_/_, Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Title

Performance metrics.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) Global

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subiect(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

Description

Classification

[1 OK
[] Modification of Strictly Conforming POSIX

[x] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[1 8. IPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[x] 12. Other

The performance metrics need to be further defined for many of the 1003.4 functional ar-

eas. The definition should specifically state the metrics to be used and should provide algorithms

for obtaining metric measurements.

Resolution

Complete the performance metric sections and introduce algorithms which explicitly show

how the metrics may be measured.

Rationale

Most individuals involved in system procurement will be required to execute their own

metrics on a system (as opposed to using measurements provided by the vendor). In the absence of

a standard test suite, users will develop programs which measure the metrics. The amount of vari-

ability in these programs will be unacceptable unless the performance metrics are well defined and

include basic algorithms. The advantage to algorithms (over code examples) is that they are lan-

guage-independent. Actual code samples would be useful, but would be tied to a language (C or

Ada).

Southwest Research Institute Page 2 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl..__ge

Pointers to static buffers.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 2.2.5

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subject(s)

[] 1. Process Env.

[] 2. Process
[] 3. Scheduling

[] 4. Events

Description

Classification

[] OK

[] Modification of Strictly Conforming POSIX

[x] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[1 8.n_c

[] 9. Networking

[] 10. System Adm.

[] 11. Security

Ix] 12. Other

No POSIX 1003.4 function (or any POSIX function) should return a pointer to a statically
allocated internal buffer.

Resolution

Add a paragraph which states that pointers updated and returned by POSIX functions will

address dynamically allocated memory which may be directly used.

Rationale

A common problem in UNIX systems is that C function calls return pointers to memory

statically allocated within the function. In order to safely use the data, the programmer must copy

it to a new location before a subsequent call to the function. Designing functions which return

pointers to dynamically allocated data allows more direct use (at the expense of forcing the pro-

grammer to free the memory).

-v

Southwest Research Institute Page 3 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl...._ge

Changes to "General Terms".

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 2.3

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Sub.iect(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

Description

Classification

[x] OK

[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[] 8. iPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[x] 12. Other

There are several terms which must be modified or added in the "General Terms" section.

Resolution

Change or add the following terms:

• "binary semaphore" - (change) Change binary semaphore definition to describe the dif-

ference between binary and other (such as "counting") semaphores.

• "persistent" - (add) Persistence in this context refers to a special file (shared memory,

semaphore) which remains available after the last close.

Rationale

These terms are required to improve understanding.

Southwest Research Institute Page 4 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl...._.ge

Section 2 is not finished.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

Classification

[x] OK

[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 2.2.4, 2.8, 2.9, 2.11

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subject(s)

[] 1. Process Env. [] 5. Timers

[] 2. Process [] 6. Files/Dir.

[] 3. Scheduling [] 7. Input/Output

[] 4. Events [] 8. I.PC

Description

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[x] 12. Other

Many of the subsections in section 2 are incomplete. These sections are either blank or con-

tain statements such as "The quick brown fox jumped over the lazy dogs".

Resolution

Complete the sections in question.

Rationale

These sections contain important information which must be completed for the final draft.

Southwest Research Institute Page 5 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl_..._e

Use of [ENOTSUP] and [ENOSYS] errno values.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

[] 1003.1 Paragraphs(s)

Ix] 1003.4 Paragraphs(s) 2.11.5

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subiect(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

Description

Classification

[x] OK

[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[] 8.iPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[x] 12. Other

The description of the [ENOTSUP] errno value includes a description of the [ENOSYS]

value. The description of [ENOSYS] is misplaced and is not correct.

Resolution

Describe the [ENOSYS] errno value in a separate bullet. Also, change the phrase "the im-

plementation does not support all required functionality" to "the implementation does not support

any required functionality".

Rationale

The description of the [ENOSYS] errno value is referenced inside the bullet for the

[ENOTSUP] errno value. The description should be placed within its own bullet. In addition, the

use of the word "all" is incorrect, as this error value indicates that the implementation does not pro-

vide "any" of the required functionality. This is opposed to the [ENOTSUP] errno value which in-

dicates that only a particular function is not implemented.

Southwest Research Institute Page 6 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

Binary semaphore persistence over a reboot.

Classification

[] OK

[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[x] Defn. of Implementation-Defined Behavior

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 3.4.1.2, 5.4.1.2, 9.3.2.2

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subiect(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

Ix] 8. IPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

Description

The persistence of a binary semaphore over a reboot is implementation defined. This could

result in non-portable code.

Resolution

Define persistence over a reboot in a standard manner. At worst, assume that the binary

semaphore value is undefined.

Rationale

There is no benefit to allowing this behavior to be implementation defined. To be portable,

an application must assume that a binary semaphore value is unusable after a reboot (worst case).

To assume anything else would cause portability problems.

This comment applies to other IPC services which are implemented as special files and al-

low persistence (message queues and shared memory).

Southwest Research Institute Page 7 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl....._g

Use of read(), write(), and lseekO on binary semaphores.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 3.4

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subject(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

Description

Classification

[] OK

[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[x] Defn. of Implementation-Defined Behavior

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[x] 8. IPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

Use of the read(), writeO, and lseekO functions for a binary semaphore do not make sense.

Resolution

Describe such operations as undefined.

Rationale

Use of any of these functions does not make sense in the context for binary semaphores.

The read() and write() function do not adequately relate to the wait (lock) and post (unlock) oper-

ations. The lseek() function has no use whatsoever.

Southwest Research Institute Page 8 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl.._._ge

Inconsistent use of ANSI C.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

Classification

[x] OK

[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 3.4.4.1, 10.3.1.1

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subject(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[x] 8. IPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

Description

The function prototype for semifwaitO does not use ANSI C format. This is not consistent

with the majority of the document. A similar problem is found for the fcntlO function in section

10.3.1.1.

Resolution

Update the function prototype to use ANSI C format.

Rationale

ANSI C allows a function prototype to directly include the types of all parameters (as op-

posed to being typed on the following lines). This format is useful and is used throughout the doc-

ument.

Southwest Research Institute Page 9 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Title

Use of the unlinkO function on a binary semaphore special file.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 3.4, 5.4, 9.3

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subject(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

Description

Classification

[] OK
[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[x] Defn. of Implementation-Defined Behavior

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[x] 8. IPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

The effect of the unlinkO function on a binary semaphore special file is not described in

the document. What would occur if another process (or a command) was used to remove a binary

semaphore special which was locked or unlocked? Would a process which was waiting on a binary

semaphore receive the appropriate notification (via errno) or would it suspend indefinitely?

Resolution

Define the effects of the unlinkO function for the described instances.

Rationale

The affect of the unlinkO function on persistent binary semaphores must be known to write

portable code.

Similar problems apply to other IPC services which are implemented as special files and

allow persistence (message queues and shared memory).

Southwest Research Institute Page 10 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl._...g

Indication of unlock (post) of binary semaphore which is already unlocked (posted).

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 2.2.5

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subiect(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

Description

Classification

[] OK

[] Modification of Strictly Conforming POSIX

[x] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[x] 8. IPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

The sempostO function does not indicate in any way in which the programmer can deter-

mine if the binary semaphore unlocked (posted) was already unlocked.

Resolution

Update the sempostO function to return an indication that the binary semaphore was al-

ready unlocked. This return should be transparent such that programs not interested in this case

would not be affected.

Rationale

This ability is important in the 1003.4 implementation, as the "holder" of the binary sema-

phore (the locking process), will not be the only process which is allowed to unlocked. The de-

scribed indication would allow a process to determine if another process inadvertently unlocked

the binary semaphore, thus averting a potential deadlock or race condition.

Southwest Research Institute Page 11 Software Executives

OSID WORKSHEET

POSIX 1003.4 Issues

Control Number

Illl

Titi....._ge

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

Typo in process memory locking section.

Classification

[x] OK

[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

POSIX References

[] 1003.1 Paragraphs(s)

Ix] 1003.4 Paragraphs(s) 4.3

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subiect(s)

[] 1. Process Env.

[x] 2. Process

[] 3. Scheduling

[] 4. Events

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[] 8. IPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

Description

The process memory locking section, line 35 contains a typo.
written twice.

"Terminate a Process" is

Resolution

Correct the document.

Rationale

N/A.

J

Southwest Research Institute Page 12 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl._.___e

Typo in shared memory section.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

Ix] Real-Time (Ground)

[] Other

POSIX References

[] 1003.1 Paragraphs(s)

Ix] 1003.4 Paragraphs(s) 5.3

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subject(s[

[] 1. Process Env.

[] 2. Process
[] 3. Scheduling

[] 4. Events

Description

Classification

[x] OK

[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[x] 8. IPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

The shared memory section, line 28 contains a typo. The phrase "defined. binary" should

be changed to "defined, binary".

Resolution

Correct the document.

Rationale

N/A.

Southwest Research Institute Page 13 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Title

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

Use of read(), writeO, and lseekO functions for shared memory special files.

Classification

[] OK

[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[x] Defn. of Implementation-Defined Behavior

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 5.4

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subiect(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[x] 8. IPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

Description

The behavior of the read(), write(), and IseekO functions should be defined. The document

describes their behavior as implementation-defined.

Resolution

Define the behavior of these functions.

Rationale

These functions are reasonable for shared memory files and their behavior should be de-

fined. Although shared memory will most commonly be mapped and accessed directly, it may be

more convenient for certain programmers to use familiar read(), writeO, and lseekO functions. If

it is determined that this is unreasonable for general implementation, then the behavior should be

undefined. At any rate, it is not reasonable to leave the behavior as implementation-defined.

Southwest Research Institute Page 14 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl___g

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

Ix] Real-Time (Ground)

[] Other

Implementation specific priority scheduling algorithm.

Classification

[] OK
[] Modification of Strictly Conforming POSIX

[x] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 6.2

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subiect(s)

[] 1. Process Env.

[] 2. Process

[x] 3. Scheduling

[] 4. Events

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[] 8. LPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

Description,
Three scheduling types are required, but only two are defined. The third designated by

SCHED_OTHER must be implemented to conform, but the algorithm used is implementation spe-

cific.

Resolution

Specify in OSID that SCHED_OTHER shall implement an "aging" scheduling algorithm.

Rationale

This implements the intent of 1003.4 which is to allow a separate non-real-time scheduling

algorithm.

Southwest Research Institute Page 15 Software Executives

Ill

OSID WORKSHEET

POSIX 1003.4 Issues

Control Number

Titl._...g

Negative priorities may cause problems.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 6.3.1.2

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subiect(s)

[] 1. Process Env.

[] 2. Process

[x] 3. Scheduling

[] 4. Events

Description

Classification

[] OK

[x] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[] 8. n:'c

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

SetpriorityO and getpriorityO returns the priority as an int. This is a problem as certain im-

plementations may allow negative priorities.

Resolution

Specify that priorities of -1 are not allowed.

Rationale

Negative priority levels are allowed as an implementation-defined feature. This is a prob-

lem as certain priority functions return -1 to indicate an error condition, making it impossible to

differentiate a -1 error from a -1 priority.

Southwest Research Institute Page 16 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Function to return current event class mask.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 7.4.2.2

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subiect(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[x] 4. Events

Description

Classification

[1 OK

[] Modification of Strictly Conforming POSIX

[x] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[] 8.u'c

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

There is no straight-forward manner to retrieve the current event class mask. The evtproc-

mask() function provides this value, but via an odd combination of parameters.

Resolution

Add a new function which returns the current event class mask

Rationale

The manner in which the event class mask is retrieved via the evtprocmask() is a "back

door" approach. A more simple and straight-forward function is required. A simple macro designed

around the evtprocmask() would be suitable.

Southwest Research Institute Page 17 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

Function types for evtsetjmpO and evtlong]mpO.

Classification

[x] OK
[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 7.4.6. I

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subject(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

Ix] 4. Events

Description

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[] 8. n:'c

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

The types shown for the evtsetjmpO and evtlongimpO functions are incorrectly defined as

int.

Resolution

The return values for the evtsetjmpO and evtlongjmpO functions should be changed to void.

Rationale

N/A.

Southwest Research Institute Page 18 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl..__g.e

System timer setting.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 8.3.1.1

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subject(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

Description

Classification

[] OK

[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[x] Defn. of Implementation-Defined Behavior

[x] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[1 8. kPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

The privilege to set a system timer is implementation-defined. Non-superuser's may or may

not be allowed to set a system timer, as defined by the implementation. This leads to non-portable

applications.

Resolution

Define the privilege required to set a system timer.

Rationale

A system timer is not normally available for user modification on multi-user systems. The

most reasonable behavior is to limit system timer modification to the superuser. Alternatively, non-

superusers may be allowed to set the timer (which would not make sense on a multi-user system).

At any rate, the behavior needs to be consistent in order to allow development of portable code.

The current behavior would force an application to assume that superuser status is required to set

the timer.

Southwest Research Institute Page 19 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Title

Timer section typos.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

Ix] Real-Time (Ground)

[] Other

Classification

[x] OK

[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 8.3.1.2, 8.3.2.2, 8.3.4.2

[] 1003.5 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subject(s)

[] 1. Process Env. [x] 5. Timers

[] 2. Process [] 6. Files/Dir.

[] 3. Scheduling [] 7. Input/Output

[] 4. Events [] 8. IPC

Description

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

The listed section includes the type "structitimercb" which should be "struct itimercb".

Resolution

Correct the document. Note that section 8.3.4.2 includes two instances of the typo.

Rationale

N/A.

Southwest Research Institute Page 20 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Title

Timer resolution.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

Classification

[x] OK
[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 8.3. I. 1

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subject(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

Description

[x] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[] 8. IPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

The document does not describe how a timer resolution is expressed. It is assumed that the

resolution will be expressed in some increment of nanoseconds (1, 1000, 1000000, etc); however,
this is not clearly stated.

Resolution

Clearly state the manner in which the timer resolution is retrieved.

Rationale

The resolution provided by the current implementation's timers is critical to all timer func-

tions. The manner in which this information is retrieved must be clearly stated to allow other func-

tions to be understood and effectively used.

Southwest Research Institute Page 21 Software Executives

OSID WORKSHEET

POSIX 1003.4 Issues

Control Number

Title

itimercbp / itimercb parameter typo.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

Ix] Real-Time (Ground)

[] Other

Classification

[x] OK

[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

POSIX References

[] 1003.1 Paragraphs(s)

Ix] 1003.4 Paragraphs(s) 8.3.2.1 and 8.3.2.2

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subject(s)

[] 1. Process Env. Ix] 5. Timers

[] 2. Process [] 6. Files/Dir.

[] 3. Scheduling [] 7. Input/Output

[] 4. Events [] 8. IPC

Description

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

The "Synopsis" section lists a structure instance named itimercbp; the discussion in the fol-

lowing "Description" section uses a structure instance named itimercb.

Resolution

Update the itimercbp value in the function prototype, as it is this value which appears to be
incorrect.

Rationale

N/A.

Southwest Research Institute Page 22 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl......_e

Use of timer values which are not multiples of resolution.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 8.3.4.2

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subject(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

Description

Classification

[] OK

[] Modification of Strictly Conforming POSIX

[x] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

[x] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[] 8. Ipc

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

The document does not describe what is done with timer increments which are not even

multiples of the timer resolution.

Resolution

The exact treatment of such values should be defined. This may be via rounding up, trun-

cation, or error return.

Rationale

The most appropriate behavior is difficult to select. Rounding up or truncation may cause

problems for applications requiting critical timing. Returning an error is probably the best solution,

but would require more work on the part of the programmer. The programmer would be required

to retrieve the system resolution and only use valid multiples of this value.

Southwest Research Institute Page 23 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl..__g.e

nanosleepO function.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 8.3.5.2

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subiect(s)

[] 1. Process Env.

[] 2. Process
[] 3. Scheduling

[] 4. Events

Description

Classification

[] OK

[] Modification of Strictly Conforming POSIX

[x] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

[x] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[] 8. IPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

In many (most) implementations of the nanosleepO function, the timer resolution will not

be able to sleep for small numbers of nanoseconds or accurately for odd multiples of the system

timer resolution.

Resolution

Behavior of the nanosleepO function should be defined for such instances.

Rationale

The behavior should specify rounding up, truncation, or error return as consistent with the

behavior of all system timers.

Southwest Research Institute Page 24 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Adding a function to purge all messages from a message queue.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 9.

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subject(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

Description

Classification

[] OK
[] Modification of Strictly Conforming POSIX

[x] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[x] 8. IPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

One of the open issues is to add a "purge all messages from the queue". This would be a
useful function.

Resolution

Define a function which allows a process to selectively purge messages in a queue.

Rationale

The direction of this open item is to add a function which returns the number of messages

in the queue. Although useful, the programmer will still be required to purge the applicable mes-

sages from the queue. It would be more convenient to provide a set of functions which selectively

purges messages based on pid, type, and other values. This function could purge all messages with-

in a category (pid, type, etc) if the corresponding value is a pre-defined constant (not 0 as this would

be dangerous).

II

Southwest Research Institute Page 25 Software Executives

I

OSID WORKSHEET

POSIX 1003.4 Issues

Control Number

Titi.__..Le

Name of the mq_errno member.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

Ix] Real-Time (Ground)

[] Other

PosIx References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 9.3.1

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subject(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

Description

Classification

[x] OK
[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[x] 8. IPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

The name of the mq_errno member of the message control block structure mqcb should be

renamed to reflect its relationship to asynchronous event errors.

Resolution

Rename the mq_errno member to for example, mq_aserrno.

Rationale

The existing mq_errno member name does not reflect that it pertains only to errors from
asynchronous reads.

Southwest Research Institute Page 26 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

Operation of mqsendO function with MQ_ASYNC flag.

Classification

Ix] OK
[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 9.3.6.2

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subiect(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

Description

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[x] 8. [PC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

Using the MQ_ASYNC flag in an mqsendO function states that an asynchronous event no-

tification will occur when the message has been received. It is assumed that event generation is au-

tomatic; however, this is not clearly stated in the document.

Resolution

Define the behavior more clearly.

Rationale

The behavior must be clearly stated in order to develop portable code. If the programmer

assumes that the system will generate the message and it never occurs, then the message sender

will never receive notification. On the other hand, if both the system and the receiver generate

events, the sender will receive duplicate notifications.

Southwest Research Institute Page 27 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Title

Performance metrics for Synchronized I/O.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

Classification

[] OK

[] Modification of Strictly Conforming POSIX

[x] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 10.5

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Sub,iect(s)
[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

[] 5. Timers

[] 6. Files/Dir.

[x] 7. Input/Output

[] 8. IPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

Description

The performance metrics Synchronized Input Time and Synchronized Output Time require

the transfer of 1 megabyte of data. This creates a problem of manufacturers using very large caches

to fool the metric. A better approach would be to specify a data size at least N'the largest cache in

the system or specify that all caches and buffers shall be cleared before the performance metrics
are executed.

Resolution

Add a statement to the OSID that all caches and buffers shall be cleared before performance
metrics are executed.

Rationale

This will ensure performance metrics will be comparable between vendors.

Southwest Research Institute Page 28 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl___e

Clarification in acancelO.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s)

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subject(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

Description

Classification

[x] OK

[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

11.4.5.3

[] 5. Timers

[] 6. Files/Dir.

[x] 7. Input/Output

[]8._c

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

The meaning of a return value of 0 for acancelO is confusing. Line 259 states that a return

value of 0 means the requested operations were canceled. This implies the event has occurred be-

fore the return from the function. Line 263 states that event notification is not given for asynchro-
nous I/O cancellation.

Resolution

Rewrite line 263 to read "Returning from acancelO serves as event notification."

Rationale

N/A.

Southwest Research Institute Page 29 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl...._ge

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

Typo in introduction to Real-time Files.

Classification

Ix] OK
[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

POSIX References

[] 1003.1 Paragraphs(s)

Ix] 1003.4Paragraphs(s) 12.1

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subiect(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

[] 5. Timers

[x] 6. Files/Dir.

[] 7. Input/Output

[18. n_c

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

Description

A typo appears on line 32 of paragraph 12.1. The line should read "with no changes nec-

essary", not "with not changes necessary".

Resolution

Correct the document.

Rationale

N/A.

Southwest Research Institute Page 30 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl._ge

Comments on Performance metrics in Real-Time files.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) 12.5

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subiect(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

Description

Classification

[x] OK

[] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

[] 5. Timers

[x] 6. Files/Dir.

[] 7. Input/Output

[]8.1Pc

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[] 12. Other

In the Real-Time files section 12.5, the performance metrics Maximum Transfer Rate for

Read Operations and Maximum Transfer Rate for Write Operations specifies the number of data

bytes transferred by a percent of the available file system. This makes no mention of cache sizes

and can give misleading results.

Resolution

Add a statement that all caches and buffers shall be cleared before performance metrics are
executed.

Rationale

This will ensure performance metrics will be comparable between vendors.

Southwest Research Institute Page 31 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl__..£e

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

Structures described to be implementation defined.

Classification

[] OK
[] Modification of Strictly Conforming POSIX

Ix] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) B. 1.2.2

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subiect(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

Description

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[] 8.iPC

[] 9. Networking

[] 10. System Adm.

[] 11. Security

Ix] 12. Other

Paragraph B. 1.2.1 describes several structures as implementation-defined. This means that

each implementation can define different structures required by threads. For portable applications,

this is unacceptable.

,Resolution

Add a statement which specifies that all structures in B. 1.2. I shall only be used in the de-
fault state.

Rationale

This will allow portability of code.

Southwest Research Institute Page 32 Software Executives

POSIX 1003.4 Issues

OSID WORKSHEET Control Number

Titl__.g

General comments on threads.

Applicable Profile(s)

[] Real-Time (Onboard-DMS)

[x] Real-Time (Ground)

[] Other

POSIX References

[] 1003.1 Paragraphs(s)

[x] 1003.4 Paragraphs(s) B

[] 1003.6 Paragraphs(s)

[] 1003.8 Paragraphs(s)

[] Other Paragraphs

Subject(s)

[] 1. Process Env.

[] 2. Process

[] 3. Scheduling

[] 4. Events

Description

Classification

[] OK
[x] Modification of Strictly Conforming POSIX

[] POSIX Extension Required

[] Non-POSIX Extension

[] Defn. of Implementation-Defined Behavior

[] 5. Timers

[] 6. Files/Dir.

[] 7. Input/Output

[1 8._pc

[] 9. Networking

[] 10. System Adm.

[] 11. Security

[x] 12. Other

The entire section on threads is still in flux. There are several open issues which will take

time to resolve. Threads should be reviewed again at a later time.

Resolution

Track threads in the coming 1003.4 drafts.

Rationale

Threads are an important feature of 1003.4 and should be tracked to ensure their usability
for ground support.

Ill I

Southwest Research Institute Page 33 Software Executives

Comments on AIS and POSIX 1003.6

1.0 Introduction

This document interprets the requirements in Johnson Space Center's Automated Informa-

tion Systems Security Plan (AIS) and determines if the requirements are met by the POSIX 1003.6

draft 3 extension for standard security (henceforth termed "POSIX 1003.6"). During the review of

the AIS document, most of the detailed computer system-related requirements were found in Chap-

ters 11 and 13. Some of the introductory chapters include high-level requirements which were later

expanded in Chapter 11. For this reason, chapters 11 and 13 were exclusively used as the basis for

the comments in this document. The basic organization of this document is to interpret each com-

puter system-related requirement in the AIS and then describe whether or not the requirement is

satisfied by POSIX 1003.6.

2.0 General Comments

From the review of the AIS, it appears that JSC will require the Discretionary Access Con-

trois (DAC) and auditing. It does not appear that Mandatory Access Control (MAC) is required, as

this is primarily required for systems which support different sensitivity levels of data. The AIS did

not clearly indicate that this was necessary.

POSIX 1003.6 is not complete and does not yet address a number of important functional ar-

eas. While the Discretionary Access Controls (DAC) and auditing are fairly well developed, the

Mandatory Access Controls (MAC) are incomplete and the Privileges section is effectively blank.

The auditing section of POSIX 1003.6 is fairly well-defined but has a limited scope. It does

not address the manner in which auditing is enabled for users, files, or applications. It is not clear

whether such functions should be part of POSIX 1003.6 or are more appropriately placed in the

POSIX 1003.7 (System Administration) specification. POSIX 1003.6 depends a great deal on the

POSIX 1003.7 (System Administration) specification. It is not clear whether administration of the

security system will be part of POSIX 1003.6 or POSIX 1003.7.

POSIX 1003.6 does not address the role of the root (or superuser) user. The interaction be-

tween this privileged ID and the security system is undefined. It is not clear if there are multiple

privilege levels (hierarchal system) or simply a single privileged ID which has access to the entire

system (including security).

POSIX 1003.6 has significant effects on the POSIX 1003.4 (real-time) specification. In ad-

dition to the basic conflict between security and real-time response, it is unclear of the affects of

DAC and MAC on the features provided by POSIX 1003.4, including message queues, shared

memory, semaphores, timers, events, etc.

3.0 Detailed Comments

This chapter lists the section number and label for each of the relevant discussions in Chap-

ters 11 and 13 of the AIS, provides an interpretation, and indicates whether or not the requirement

is met by POSIX 1003.6.

Southwest Research Institute Page 1 Software Executives

Comments on AIS and POSIX 1003.6

11 Security Standards

11.3 Operating Systems

11.3.1 Operating System Controls

Interpretation

This capability will be provided via basic owner, group, and other permissions for read, write,

and execute. Permissions will be attached to all objects (files and applications) for which protection

is required. It will be the responsibility of users and administrators to assign and maintain the ap-

propriate access controls.

Requirement

POSIX 1003.1 provides the owner, group, and other permissions for read, write, and execute.

POSIX 1003.6 provides additional access control via Access Control Lists (ACLs), which are part

of Discretionary Access Control (DAC). ACLs allow objects to include lists of user, group, and

other permissions.

11.3.2 Clear System Programs

Interpretation

The AIS does not indicate when the "clear" operation must take place. It is assumed that this

clear function will take place when the object is moved or removed from its current physical loca-

tion. This requirement is applicable to all forms of random access storage, including disks (for

when an object is removed/moved) and primary memory (when an application explicitly or implic-

itly [via termination] frees memory space).

This is a reasonable concem, as in most implementations, it is possible to allocate disk or

memory space without actually clearing or writing any data. In this instance, the old sensitive data

could appear in an another object (a file or memory buffer). An application could repeatedly allo-

cate disk or memory space in an attempt to locate sensitive data.

This requirement will most appropriately be provided via a remove function which will clear

(zero out) space occupied by sensitive data. Note that it requires an order of magnitude more time

to clear data space.

Requirement

POSIX 1003.6 references the term "object reuse", which indicates that objects (files, disk

space, etc.), are reusable if they do not include any residual data. The actual mechanism for this

was not found in the specification. This should be a feature of MAC, which is used on systems with

multiple sensitivity levels of data.

11.3.3 Shutdown and Restart

Interpretation

It is not clear what this requirement entails. Systems which have failed or are down for nor-

mal maintenance tend to be very vulnerable (at least UNIX systems). Unless special steps are tak-

en, it is often possible to boot from an alternate location (such as a tape, secondary disk, or floppy).

This is an obvious problem as the software on the alternate media would not be constrained by the

security system. Another security problem is that many UNIX systems allow single-user mode to

be initiated (booted) without a specification of a password.

Southwest Research Institute Page 2 Software Executives

Comments on AIS and POSIX 1003.6

Requirement

POSIX 1003.6 does not specify the security provided outside of the normal POSIX operating

environment. Security outside of the operating system is inherently implementation dependent and

would be difficult to specify the interfaces in a standard. This is however a valid requirement and

should be addressed in either POSIX 1003.6 or 1003.7.

11.3.4 Recovery Management

Interpretation

Functions which need to be recovered after a system has failed should be defined when the

system is designed so that any redundant information which is necessary for recovery and historical

log keeping facilities can be built into the system.

Requirement

POSIX 1003.6 does not provide an interface for recovery management. This subject may be

more appropriately covered in System Administration, 1003.7.

11.4 JSC Standard On Controlled Access Protection

Interpretation

Systems containing sensitivity level 2 or 3 objects will provide individual authentication and

accountability by use of unique user IDs and passwords. The system will prevent unauthorized ac-

cess or modification of this information.

Audit trails will be generated for all activity on privileged IDs and for user-selectable periods

as required for suspected violations and spot checks. It must be possible to enable auditing for a

given user or object.

User access to objects will be provided by permissions and ACLs. Maintenance of permis-

sions is the responsibility of the user and system administrator.

Requirement

POSIX 1003.6 includes the concept of sensitivity levels via the Mandatory Access Controls

(MAC). MAC provides "labels" which may be attached to objects and subjects (processes). The

labels define different sensitivity levels and provide rules for access control. Use of MAC will be

necessary if a system uses different sensitivity levels. It is not clear from the AIS whether or not a

given system includes different sensitivity levels.

POSIX 1003.6 provides auditing functionality. The specification primarily defines an exam-

ple interface which allows an application or function to generate audit records in a standard format.

The specification does not describe how auditing is enabled for a user, file, or process.

POSIX 1003.6 provides access control via basic permissions and ACLs.

11.6 ID Administration And Ownership

11.6.1 Issuance

Interpretation

JSC procedure. For discussion of the different types of ID's, refer to section 11.6.4, which

deals with the responsibilities of the different types of users.

Southwest Research Institute Page 3 Software Executives

Comments on AIS and POSIX 1003.6

Requirement

POSIX 1003.6 does not directly support the 5 types of user IDs. However, several of the types

may be logically implemented with permissions and ACLs.

11.6.2 Annual Revalidation

Interpretation

JSC procedure. This procedure would be aided by automated support which retains the dates
at which time each user ID was last utilized. This is a simple accounting procedure and does not

add an appreciable amount of system overhead. This information would be useful in determining

which accounts could be removed during the annual (or periodic) revalidation procedure.

Requirement

POSIX 1003.6 does not specify saving of any user-specific time stamp information to the file

containing user IDs. If such automated record keeping is required, then it must be determined

whether it belongs in POSIX 1003.6 or POSIX 1003.7.

11.6.3 Expiration

Interpretation

JSC procedure. This procedure will also benefit from automated accounting. Each user ID

and password could have an associated creation time and an expiration period. When this period

expires, a notification could take place or the system could automatically disallow subsequent ac-

cess attempts. This mechanism would also allow the expiration to be set for different types of users

(short expiration for privileged and high-sensitivity users and long for others).

Requirement

POSIX 1003.6 does not specify use of expiration times for user IDs and passwords. Again,

if this function is required, it may be added to POSIX 1003.6 and POSIX 1003.7.

11.6.4 ID Owner Responsibilities

11.6.4.1 Personal ID Owner Responsibilities

Interpretation

Leaving a terminal session unattended is a problem and must be controlled with procedures.

An electronic alternative is to require a "watchdog" daemon which logs the user off after a defined

period of inactivity. Such daemons add overhead and often are forced to take unpleasant actions

against users (such as terminating an edit session or a CPU bound process).

Protecting user data, keeping passwords secret, reporting expired IDs, and reporting dis-

closed passwords are controlled via procedures.

Requirement

POSIX 1003.6 provides permissions and ACLs for protecting of user data. It is however up

to the discretion of the user and system administrator to use these mechanisms to protect data.

1.6.4.2 Privileged ID Responsibilities

Interpretation

The AIS implies that multiple privileged user IDs are required. This is necessary to allow in-

dividual accountability, as if all privileges were through a "root" ID, it would not be possible to

track the individual responsible for a security violation.

Southwest Research Institute Page 4 Software Executives

v

Comments on AIS and POSIX 1003.6

All actions taken with a privileged account should be audited automatically by the system.

The audit process must be real-time and be assured to complete before the privileged action is al-

lowed to take place. A reasonable procedure will be to utilize a specially protected write-only de-

vice (printer or disk) to which audit information is output.

Privileged ID passwords should expire more frequently than normal user IDs. It may also be

necessary to review IDs more often than annually.

Providing "templates" of privileges for different tasks would be useful, but difficult to imple-

ment. It may be more appropriate to designate such users as non-privileged and assign ownership

of the appropriate tides to allow access.

Privilege granting is a JSC procedure.

If additional environmental controls are required, it would be possible to implement a system

which only allows privileged access during periods of time or only when a designated system ad-

ministrator is currently logged on to the system.

Requirement

POSIX 1003.6 does not yet define privileged access. Although the scheme for privileged ac-

cess is not known, it is suspected to be similar to the UNIX usage of the "root" ID. This is a problem

as there is no way to account for individual actions, as all privileged users would use the same ID.

A solution is to require an interface in 1003.6 which specifies creation of individual IDs, each with

the equivalent of root access. Another solution is to disallow direct root access. In order to use root,

a user must tizrst log in as a normal user and then change to root.

POSIX 1003.6 does not specify the relationship between privileged use and protection of se-

curity related files. In particular, will it be possible for a privileged user to circumvent the security

system (by updating or disabling the audit system)? This is probably possible, but should be no-

ticed with real-time audit record generation.

11.6.4.3 Project ID Responsibilities

Interpretation

It appears that a project ID is the same as a personal ID, except that the owner is responsible

for insuring that the project data is not accessed outside of the project group. This may be per-

formed by setting the permissions and ACLs on data objects so that project users alone can access

the data as required (reading, writing, and executing). The project ID user could also allow new

users to access the project data by updating the group or changing ACLs.

Reviewing "all access lists" most likely refers to determining if all users still need access to

data (still belong in the group) and if all permissions are correct.

Requirement

POSIX 1003.6 provides all functionality necessary to support logical project IDs. A project

would most likely correspond to a POSIX 1003.1 group.

11.6.1.4 System Service IDs

The distinction between system service ID and a privileged ID is not clearly defined. Does a

system service user require privileged access? A user responsible for maintenance of system soft-

ware will normally require privileged access, especially if the intended definition of "system" in-

cludes operating system, security, graphics, or other software.

Southwest Research Institute Page 5 Software Executives

Comments on AIS and POSIX 1003.6

It appears that the system service ID may be interpreted as a special form of privileged user

which is temporarily provided to allow vendors and support personnel to periodically update the

system software. The statement "the ID Manager may grant authorization to login to the ID to other

users" implies that this ID will be temporarily provided to users who must perform system main-

tenance. This of course could cause problems if the password is not immediately modified after the

ID is used.

All activity on a system service ID should be audited as described for a privileged user ID.

Passwords should be treated in the same manner as privileged IDs, rather than in the same manner

as personal IDs.

An alternative approach is to set the permissions of all files pertaining to a "system" to be

owned by the system service ID user. In this way, that user could change the software as needed.

Again, this is not foolproof, as unless all objects are isolated, it would be a problem to add new

objects or directories.

Requirement

POSIX 1003.6 does not directly specify this type of user ID. As indicated, it may be imple-

mented via a privileged ID or a user ID which owns all relevant objects. It may be most appropriate

to remove this ID type and classify it as privileged.

11.6.4.5 Generic ID Responsibilities

Interpretation

The distinction between generic and personal IDs is not clear. It does not appear that generic

IDs are "guest" accounts, as this is a basic violation of a secure system. Generic IDs also do not

appear to be common IDs which are shared by multiple users, as this would prevent individual ac-

countability. Rather, generic/Ds are similar to personal IDs, except that a particular users access

is fairly short-lived (such as a training exercise in which a temporary ID is assigned for use).

It is a necessary procedure to immediately change the ID's password once a user has com-

pleted its use. The expiration time on such ID passwords should be very short.

Requirement

POSIX 1003.6 provides the functionality described (assuming the interpretation described).

11.6.5 ID Management

Interpretation

JSC procedures.

Requirement

N/A.

11.6.6 Non-trivial Passwords

Interpretation

Most of the constraints described are reasonable and should be implemented as JSC proce-

dures. This is primarily due to the fact that whether or not a password is "trivial", is a subjective
decision which cannot be automated.

An additional constraint is a procedure which insures that users do not use the same password

for multiple systems. This is a serious problem when users are active on systems at different sen-

sitivity levels. On non-secure development systems, users often allow their passwords to be known

Southwest Research Institute Page 6 Software Executives

Comments on AIS and POSIX 1003.6

by other users. If the same password is used on a secure system, it would be possible for an unau-

thorized user to gain access.

When a new system is received, it is a sound procedure to insure that all IDs (especially priv-

ileged IDs) are updated to use valid non-trivial passwords. When shipped, most systems will only

include a few IDs necessary for system operation. This includes a privileged ID which will not be

password protected (UNIX root).

Requirement

POSIX 1003.6 does not describe use of passwords. This is also absent from POSIX 1003.1.

If any of the constraints described are to be automated, modification must be made to the appropri-

ate specification. It would be reasonable for the system to implement the following constraints:

• Password not equal to user ID.

• Password does not consist of obvious strings (the strings are listed in a file which may

be updated by system administrator).

• Updated passwords must not be successive - during password reviews, the system must

insure that changed passwords are actually different. It is also necessary to prevent a

user from changing to a temporary password and then back to the previously used pass-
word.

Access and maintenance of passwords may be most appropriately described in POSIX

1003.7

11.9 System Security

User Identification

Interpretation

JSC procedure.

Requirement

N/A.

Application Independence

Interpretation

This capability will be provided via basic owner, group, and other permissions for read, write,

and execute. ACLs may be used if necessary.

Requirement

POSIX 1003.1 provides the owner, group, and other permissions for read, write, and execute.

POSIX 1003.6 provides additional access control via ACLs.

Maintenance of the Security System

Interpretation

The definition of "real-time" is unclear? Is this true real-time response or is it simply "on-

line" in which the security record updates are not queued? Queueing records may allow an individ-

ual to intercept and remove them before they are logged. If the covert action is to disable the sys-

tem, then if the record is not logged first, the system will fail before the violation is recorded. This

case demonstrates that true real-time logging is required (at least in special cases).

Southwest Research Institute Page 7 Software Executives

Comments on AIS and POSIX 1003.6

Access controls include basic permissions and access control lists. Operator capabilities will

be limited via these access controls. Password changes will be audited and only allowed for privi-

leged users (and possibly for a user's own 1I)).

It is assumed that "system programmers" are privileged users. There must be a mechanism

which prevents privileged users from affecting audit files (at least without the knowledge of the

system).

Requirement

POSIX 1003.6 does not specify whether or not audit record updates are logged in "real-time".

This is a reasonable requirement.

POSIX 1003.6 defines the basic access controls and ACLs. The specification does not de-

scribe any means of controlling access to passwords.

POSIX 1003.6 does not specify how audit files are protected from privileged users.

Security System Administration and Monitoring

Interpretation

JSC procedures. "Self-auditing" is assumed to involve a privileged user having access or con-

trol of audit information generated for himself. Self-auditing could be prevented by disallowing ac-

cess to security files, real-time audit record logging, or logging of all privileged actions to a write-

only device.

Requirement

POSIX 1003.6 does not specify the manner in which self-auditing is prevented.

Auditability

Interpretation

Security auditing must be provided and it must be possible to enable/disable auditing for the

following:

• User ID (including privileged IDs)

• Process

• File (such as the password file)

The system must allow audit for a controlled period of time. The system must also provide a

set of functions which allow the audit records to be reviewed in a straight-forward manner.

Requirement

POSIX 1003.6 defines the basic functions required to generate audit events. These functions

may be included in a trusted application to generate audit records. POSIX 1003.6 does not specify

the system utilities which allow control of the audit system for user IDs and objects. This is appar-

ently to be covered in the POSIX 1003.7 specification or a later draft of POSIX 1003.6.

POSIX 1003.6 does not specify any functions which allow review of the audit records. The

specification defines a standard format which will allow other functions to review the audit data.

Such review functions�commands will probably be found in POSIX 1003.7.

Terminal Operator Training

JSC procedure.

Southwest Research Institute Page 8 Software Executives

Comments on AIS and POSIX 1003.6

Requirement

N/A.

11.9.6 Password Usage

11.9.6.1 Composition

Interpretation

An automated password system is required to verify that the generated or selected password

is composed of characters from a subset of at least 10 characters taken from the set of 95 graphics
characters. It is unclear whether this automated password system is generating passwords for users

and how the subset of 10 characters is selected.

Requirement

POSIX 1003.6 does not provide this function.

11.9.6.2 Length Range

Interpretation

This section calls for the password to be at least six characters long and to allow for a mini-

mum of 10,000 possible passwords when used in conjunction with the number of characters in the

composition subset. An automated password system shall verify that only passwords having a

length within the acceptable length range shall be generated or selected whenever a password is

created or changed. The selected password length will be an indication of the level of privilege

associated with the password.

Requirement

POSIX 1003.6 does not provide this function.

11.9.6.3 Lifetime

Interpretation

Passwords shall have a maximum lifetime of 6 months.

Passwords which are suspected of being compromised should be replaced within one work-

ing day from the time of suspicion. Passwords should be deleted or replaced within three working

days from the time that an owner is no longer an authorized system user, or any one of a set of own-

ers is no longer authorized access to the data.

Passwords forgotten by their owner shall be replaced, not reissued. This is a procedure.

An automated password system shall allow the 11) Administrator to delete or replace a pass-

word and will be capable of maintaining a record of the password transaction.

Requirement

There is no reference in the POSIX 1003.1 or the 1003.6 document to a function which will

allow update of a password. There are functions for retrieving, but not for setting.

The only reasonable approach to monitoring the life of a password is to store the date of the

last change, calculate an expiration date based on the time of creation or change, and then store the

expiration date also. An automated routine could then be used to periodically check for passwords

which have expired. The storage of these dates could be useful for other security requirements as
well.

Southwest Research Institute Page 9 Software Executives

Comments on AIS and POSIX 1003.6

11.9.6.4 Source

Interpretation

All passwords must be randomly selected from a list of acceptable passwords or a string

which is not at all related to a user's personal history. This is a JSC procedure.

Passwords selected or created shall be tested by the automated password system to assure that

they meet the specifications of composition and length established for the AIS system before they

are accepted as valid passwords.

Requirement

POSIX 1003.6 does not provide these functions.

11.9.6.7 Ownership

Interpretation

JSC procedures.

Requirement

N/A.

11.9.6.6 Distribution

Interpretation

Passwords are created and assigned to users by the automated password system. Any time a

change is made to the password, an audit record containing the date and time of the password

change and the identifier associated with the password is created and made available to authorized

security personnel.

When the passwords are distributed from the password source, the temporary storage of the

password should be erased, and the permanent storage of the password should only be accessible

to the owner and the protected password system. There is no mention of privileged users being

able to access the passwords.

Requirement

POSIX 1003.1 has deleted the storage of encoded passwords from both thepasswd and group

databases. The standard provides functions for keyed lookup of passwords so that it may not be

possible for an application to browse the system databases indiscriminately. Where the passwords
are stored is not clear.

11.9.6.7 Storage

Interpretation

Stored passwords will be protected in such a way that only the password system is authorized

access to a password. Passwords that are encrypted before they are stored shall be protected from
direct substitution.

Requirement

POSIX 1003.6 does not provide this function. Passwords are encrypted before they are

stored and are never decrypted. Whenever an entered password needs to be verified, the entered

password is encrypted and then compared to the stored encryption. This helps to protect the access

to the password.

Southwest Research Institute Page 10 Software Executives

Comments on AIS and POSIX 1003.6

11.9.6.8 Entry

Interpretation

The system will not echo a password when being entered by the user. It must not be possible

for the user (or another user) to modify this behavior.

It must not be possible to emulate the login process on a terminal in order to "steal" passwords

from a user attempting system access.

The number of allowed password entry attempts (retries after incorrect password entry) shall

be limited to a number selected by the system administrator. An 11) shall be locked out in response

to exceeding the maximum number of retires specified by the system administrator.

Invalid logins to a user ID shall be tracked and reported by the security system. Notification

of invalid access attempts should be made to the security administrator and the user.

Requirement

POSIX 1003.6 does not provide any of the listed functions.

11.9.6.9 Transmission

Interpretation

It is not clear what this requirement is trying to address. The entered password will be en-

crypted (if necessary) and then compared to the stored password. All movement and comparisons

will occur in the address space of a process. It is not likely that this data space will be violated.

Passwords transmitted between the place of entry and the place of comparison with the stored

password shall be encrypted at the place of entry if the data that the password is protecting is en-

crypted at the place of data entry.

Requirement

Since it is not clear what this requirement is addressing, it is unknown what the requirement

in POSIX may be.

11.9.6.10 Authentication Period

Interpretation

Personal passwords shall be authenticated each time a claim of identity is made, e.g., when

"logging in to" an interactive system.

Access passwords shall be authenticated during the initial request for access to protected

data.

Requirement

There is no mention of password authentication in the POSIX 1003.6, however most UNIX

systems will request a password whenever access is attempted.

13. AIS Security Infractions Violations

13.2 Detection

13.2.1 System Resource Monitoring

Interpretation

The basic permissions and ACLs may be used to control access to most system resources

(such as files, devices, and system applications). Abuse will be prevented by not allowing access

Southwest Research Institute Page 11 Software Executives

Comments on AIS and POSIX 1003.6

to these resources. Abuse of resources such as CPUs, printers, and storage devices is prevented by

use of quotas which limit the amount of access, time, or space allocated to a given user.

Requirement

POSIX 1003.6 does not include any mechanism for controlling resource allocation. Many

UNIX systems provide an accounting/quota mechanism which may be used for this purpose. This

however is more appropriately placed in POSIX 1003.7.

13.2.2 Audit Logs

Interpretation

All actions taken by privileged users should be audited. While this may not be the constant

operating state, it must be possible to enable or disable this operation.

Requirement

POSIX 1003.6 provides the basis for auditing. As previously described, the POSIX 1003.6

specification does not address the manner in which auditing is enabled for a given user or object

(file or application). This however is a valid requirement and must be present in the POSIX 1003.6

or 1003.7 specifications.

As previously described, it is not clear how POSIX will prevent privileged users from access-

ing audit logs.

13.2.3 Exception Reports

Interpretation

Generation of exception reports is useful for picking out the audit events which pertain to a

suspected security violation.

Requirement

POSIX 1003.6 does not specify any functions or commands which may be used for audit log

post-processing. POSIX 1003.6 does however specify a standard format for audit records which

will simplify development of functions and commands which provide post-processing. Such func-

tions will most likely be described in POSIX 1003.7.

13.2.4 Operator Logs

Interpretation

Operator logs would be a useful way of monitoring system activity. Real-time generation and

review of audit records will prevent even a privileged user from adversely affecting the security

system. In the absence of a human operator, the audit records could be output to a printer or other

write-only device.

Requirement

POSIX 1003.6 does not specify the manner in which audit records are generated. Whether or

not the records are generated in real-time and the ability to route to a specific destination appear to

be implementation-defined. Generation of real-time audit records is a valid requirement.

Southwest Research Institute Page 12 Software Executives

Status on Interlanguage Support

1.0Introduction

A currentproblemfacedby NASA and other organizations is a large amount of code devel-

oped for systems that will not be supported in the future. In NASA's case this is FORTRAN code

not compatible with the workstation/UNIX environment. One way to still use the FORTRAN code

is to isolate nonstandard FORTRAN functionality into C subroutines. This does not provide a por-

table solution but isolates the problem to interlanguage support. The only way to ensure that inter-

language support is vendor independent is through an independent standards organization. In this

case POSIX is the committee most likely to be developing interlanguage standards.

2.0 POSIX

2.1 FORTRAN Bindings

John McGrory, chairman of the FORTRAN Bindings committee, was contacted about inter-

language support and indicated that his group is not pursuing interlanguage support. Mr. McGrory

is willing to help introduce any efforts of introducing an interlanguage specification. He referenced

me to Rick Anderson of Boeing Computer Services. Mr. Anderson has completed a f'trst draft of a

proposal to allow FORTRAN routines to call C subroutines. The proposal is currently being re-

viewed at Boeing and he is sending a copy of the proposal to SwRI. He was very interested in hav-

ing other groups support the proposal.

The FORTRAN bindings specification will be voted upon in August of 1990. It is expected

to require a second vote in December of 1990. This is for bindings to 1003.1. Then the committee

will begin work on bindings for any POSIX standards that are completed. This is expected to be

the real-time specification (1003.4) and the revision of the 1003.1 specification.. The completion

of this work is expected in second quarter of 1991. Bindings for the most recent version of FOR-

TRAN (8X or 90, depending on who you talk to) is expected to begin at the end of 1990.

2.2 Ada Bindings

Steven Deller is the current chairman for the committee on Ada bindings. Terrenace Fong is

the previous chairman and the current vice-chairman. Mr. Fong indicates that interlanguage sup-

port is not being addressed by the bindings committee and there is not a group preparing a proposal.

The bindings specification will be voted upon in the summer of 1990. After the standard has been

adopted, the group will start work on the bindings for other POSIX standards that have been com-

pleted. Mr. Fong also commented that the committees will begin a language independent version

of the POSIX standard when the current work has been completed.

3.0 Conclusions

At this time the interlanguage issue is a long way from being solved. Beoing may make a pro-

posal, but that will take a long time to finalize and be supported by the industry. In a shorter time

frame, the FORTRAN bindings specification will be completed. All functionality of 1003.1 will

be available from FORTRAN compilers. At this time, the existing FORTRAN code can be rewrit-

ten to the POSIX standard. This will give access to system routines directly from FORTRAN and

be portable to other POSIX compliant systems.

Southwest Research Institute Page 1 Workstation Executives

Status on Interlanguage Support

4.0 Contacts

Below is a list of contacts used in researching the interlanguage support issues:

Lisa Granoien

IEEE Computer Society

(202) 371-0101

John McGrory

POSIX FORTRAN Bindings Chairman

(408) 447-0265

Rick Anderson

Boeing Computer Services

(206) 865-3523

Terrance Fong

POSIX Ada Bindings Vice-Chairman

(602) 533-2873

Southwest Research Institute Page 2 Workstation Executives

Introduction

1.0 Introduction

SwRI has developed a load sharing prototype as proof-of-concept for a capability identified in the

Concept Executive specification. Load sharing refers to the ability to view a collection of worksta-

tions as one loosely coupled multiprocessor. Load sharing allows jobs to be scheduled on those

workstations which have the highest amount of available resources.The load sharing prototype de-

veloped by SwRI supports the following capabilities:

• Efficient and more balanced utilization of all workstation processors and associated

computing resources.

• Utilization of idle or underutilized workstation's computing resources.

• Utilization of dedicated compute servers for processing of user jobs.

• Allows users on older, less powerful workstations to take advantage of capabilities on

newer, more powerful workstations.

• Allows user level control of a local workstation's participation in the load sharing ac-

tivity.

This design is for a load sharing prototype, as opposed to a load balancing prototype. Load sharing

means that underloaded workstations will give up some of their resources to support other, over-

loaded workstations. No attempt will be made to evenly balance the load across all workstations.

Page 1-1 Load Sharing Design

Status Collection Functional Design Overview

2.0 Functional Design Overview

The functionality of the load sharing prototype is divided into the following three classifications:

• Status collection - the process of retrieving status information for the current and re-

mote workstations.

• Scheduling - the process of using status data to schedule user jobs locally and on remote
workstations.

• User interface - the process which allows a user to submit, control, and monitor sched-

uled jobs.

The load sharing design is fully decentralized. All status collection and scheduling is performed in

a distributed manner on each participating workstation. This is in contrast to a centralized status

collector and scheduler. The decentralized approach was selected for the following reasons:

• A centralized design is much less fault-tolerant. In this design, if the scheduler fails, the

entire system fails.

• Use of a centralized design delays process execution, as each job request must be trans-
ferred to the central scheduler.

• There is no dedicated host in the target network which would be a suitable central
scheduler.

• Although a central scheduler can make better choices about the optimum target work-
station, a decentralized approach is more than adequate.

The load sharing design supports a heterogeneous environment. This means different workstations

from the same vendor and different vendors within the same environment are supported.

2.1 Status Collection

The load sharing prototype utilizes an approach in which status information is periodically "adver-

tised" to all workstations in the local network. This approach is in contrast to status querying, in

which when a job is ready to run, the source workstation queries one to many other workstations

in an attempt to find a suitable (or the best) location for scheduling. The advertising approach was

selected due to the following advantages:

• Availability of network broadcast messages which allow one datagram to be sent to all
workstations in a local network.

• Provides the most efficient approach in local network containing a relatively small
number of workstations.

• Provides much better response, since all status information is already available for job
scheduling.

• Very efficient if broadcasts are only made when a workstation's status changes signif-

icantly.

• The advertising approach is more scalable (assuming that status data is not indiscrimi-

nately broadcast).

Page 1-2 Load Sharing Design

Scheduling Functional Design Overview

• Querying is inefficient, as an overloaded workstation is forced to become more over-

loaded in order to query destination workstations.

• Although querying can provide more up to date information, advertising is more than

adequate.

The "load" calculated for a workstation is an aggregate value of the available processing, memory,

and other pertinent resource information. Each workstation includes parameters which define its

processing capability. The parameters include:

• Total processing capability (MIPS, CPU's, cache, etc.).

• Total memory.

2.2 Scheduling

The high/low algorithm is used to determine when a workstation is able to accept remote jobs and

when a workstation will submit jobs for remote execution. The high/low algorithm involves main-

talning a high and low load mark on each workstation. When a job is scheduled, it will be run lo-

cally unless the local load is greater than the high mark. Conversely, a workstation will only allow

introduction of jobs if its load is less than the low mark.

The high and low marks axe adjustable by the user. This allows users to control the degree of par-

ticipation in load sharing.

Adjusting the high and low marks allows a workstation to be completely independent of the load

sharing system. Adjustment also allows effective use of compute servers.

The high/low algorithm allows scheduling of jobs on workstations which are not completely idle.

Any workstation whose load is less than the low mark is considered available to support remote

jobs.

2.3 User Interface

The user is provided with a Motif-based user interface which presents the following pertinent in-
formation:

All active hosts and their respective load and parameters.

Local parameters (such as the high and low mark).

List of all active jobs (local and remote).

List of all status messages.

The user interface also allows control of all jobs. This includes the ability to perform each of the

following functions:

• Scheduling of jobs.

• Termination of jobs.

• Changing the priority of jobs.

• Updating the local high and low marks.

Page 1-3 Load Sharing Design

Initialization (lsinit)
I

Implementation Overview

3.0 Implementation Overview

The load sharing prototype was developed on Sun 4's and Masscomp 6000 series workstations.

The complete list of hardware is:

• (1) Masscomp 6650 running RTU 4.0

• (1) Mas scomp 6350 running RTU 4.1

• (4) Sun 4/60's running SunOS 4.0.3

• (3) Sun 4/65's running SunOS 4.1

• (1) Sun 4/330 running SunOS 4.0.3

• (1) Sun 4/150 running SunOS 4.0.3

Note that a bug was discovered on the Masscomp's which prevents use of a specific message queue

feature. A temporary work around for this problem was implemented on the Masscomp. The im-

plementation of the load sharing prototype is characterized by the following:

• The existing NASA prototype for Health and Status collection (has) was used to collect

raw status information.

• TCP/IP-based network protocols are being used for network connectivity. This is nec-

essary to support basic communications (sockets, broadcast, etc.), NFS, and X Win-
dows.

• X Windows is used as the basis for job to source connectivity. Remote jobs not needing

X are shelled with a terminal emulator (xterm). The user interface uses the Motif widget

set and depends on the Motif window manager (mwm).

• The Network File System (NFS) is used to establish a consistent file system across all

operating workstations.

• During normal operations, in which no scheduling activity takes place, less than 1% of

available processing capability is used.

• Network interfaces are fully isolated from application code. This allows ISO to be eas-

ily introduced at a later time.

• All network data is passed in the form of UDP datagrams. No point-to-point connec-
tions are maintained.

The main portion of load sharing information is held in shared memory. All local message passing

is performed via a single message queue. The shared memory segment used is relatively small (ap-

proximately 20K).

The load sharing prototype consists of five daemon processes which are always active and one

user-initiated process. These processes and their responsibilities are described in the following sec-
tions.

3.1 Initialization (ls_init)

This daemon process is responsible for initialization of the load sharing system. This process per-

forms the following:

Page 1-4 Load Sharing Design

Health and Status (has)
II

Implementation Overview
I

Initializes all resources (network, shared memory, semaphore, and message queue).

Executes all other daemon processes.

Waits for termination signals from children. Upon termination, the appropriate child is

respawned.

Upon receipt of a SIGHUP signal, ls_init performs an orderly termination of child pro-
cesses and removal of all resources.

3.2 Health and Status (has)

This daemon process is responsible for retrieval of raw status information. The has process used

for load sharing is a variant of the prototype developed by Ford Aerospace. The has process was

modified to support both Suns and Masscomps.

3.3 Status Advertisement (lsstatus)

This daemon process is responsible for advertising status information for the current workstation

to other workstations in the network. This process:

• At a defined interval, retrieves raw status information saved in shared memory by the

has process.

• At another defined interval, all accumulated status information is averaged into an ag-

gregate load value. If this load value is "different" from the last advertised load value,
the new information is broadcast on the network.

• If no information has been broadcast for a defined "heartbeat" interval, information is

broadcast to allow other workstations to know that the current workstation is still active.

• Checks if any remote status information has arrived. If so, update local shared memory.

• At another defined interval, check the local list of hosts to determine if any are "stale"

(no heartbeat received).

3.4 Network Interface (Is_net)

This daemon process retrieves all load sharing datagrams from the network. These datagrams are

placed into message queues which allow the requests to buffer properly. This function is isolated

in a separate process to insure that no datagrams are lost.

3.5 Job Scheduler (Is_scheduler)

This daemon process accepts job control requests and either executes the requests locally or routes

them to the appropriate workstation (based on load). This process waits on a message queue for

arrival of requests and responses. Requests originate from both local or remote users. The requests

processed include:

• Schedule request - runs the job locally or routes it to the appropriate remote worksta-
tion.

• Termination request - if local, terminates the job; if remote, routes the request to the ap-

propriate remote scheduler.

• Set priority request - if local, updates the priority; if remote, routes the request to the

appropriate remote scheduler.

Page 1-5 Load Sharing Design

User Interface (Is_monitor)
I III IIII

Implementation Overview

Changing the state of a remote job causes generation of a response which is returned to the local

user. This allows the local user to be informed of the change in job status.

An occasional problem with the job scheduler occurs when a job is submitted to a remote worksta-

tion on which the load suddenly crosses the low mark. In this case, the job must be transferred to

another workstation. This "bouncing" of a job will occur infrequently and is a natural effect of the

status advertisement approach, in which local status information is stale for a brief period. To pre-

vent a job from bouncing indefinitely, each job request includes a value which indicates the number

of bounces. When this value reaches the maximum, the job is forced to execute on the original
workstation.

3.6 User Interface (Is_monitor)

This user-initiated process allows the user to use and monitor the load sharing system. This Motif-

based process presents all pertinent information and allows jobs to be scheduled, monitored, killed,

and have priorities updated. The following three pages provide sample displays which illustrate:

• The main display with several jobs running locally and on remote workstations. The ac-

tive jobs are represented by icons on the right side of the display.

• Several host popup windows which display the high/low marks and load of the work-

stations participating in load sharing.

• The static parameters, job execution, job termination verification, and job priority

change popups.

!

Page 1-6 Load Sharing Design

User Interface (Is_monitor) Implementation Overview
I I

4.0 Data Flow Diagram

The following diagram illustrates the flow of data through the load sharing system:

I Raw_tatus I
Collection Advertiser

(has) p (Isstatus)

:Queue Access
(Isnet)

Legend:

o

¢t

Faint line - status data flow.

Medium line - job control flow.

Heavy line - network datagram input.

Dashed line - user input and requests.

Page 1-7 Load Sharing Design

o

o=
o

I

e

o_o

o "

z v v v v v v v v v v v v v

,_j, ,e, ,w, ,,), _ ,o, ,_), _ ,e, ,t, ,w, _ ,m,

m I

o o

w

o_
m

>

ORIGINAL PAGE IS

_ OF pOOR QUALITY

_o

_2
_8

-.- _ _ ,,

o)=_ ._ -_ ,,,,,

• _ I I
m m m m

_-m mmm
,,_ _J

ooo

m _i "0

: • _ o o

¢ N

: ._ _ o • .o='_ "
" _ _"_ _ ®_ _0 .o
. o o,o_ . _ _ _=-

: _ _g_o_o _ o_= _o_

: _ __ _o $ _

u; •

o =_.

.. ._o

g o •

,-.t ,--t

o _

o mm _ 8°

m

o oo, _ 00

_ _ _ o

.c .c

C I l/ I I I i_ [--, _ _ m

0 _ rn g._ m _ ;-_ 0 0 0 0 0 0 0 0 0 -_ _(_ 0 0 0 0

o_

0

n

== ,_ ?

- •

0 0

rx ,"_

m

°...

t

it il

_3,-0

_-.-a

0

•..J ,-i H

® '

0 •

o _IJ

oL)

o=

? ? ? ? _' ? ?

,

o

0

II I_ # l g

I I

• •

r_

0

"0

C

o=

A

v

Oh

. °_o

.-_ ,__=_

o=- _=.o _

o -_o_

E * _ C

0

°.

o
A_

o

o

_ m_D
i

_o,

m

°,.4

o

o

.

e

_o

:_ _o

z U Q_'_

z ,, m u

:o _

C _

0

_:

ff -

g _:

_ _0.

,J

C

C _o _o, _
_ _o_ o_..

.,.-t

o

°,

o

o

_o

o

_o
_ 0 t

_.

_o

o_

o

°.

I

I

_'
1,4 O

O O

_J

2

;2

1.4

_ t

N_

o_

L

H_

'_

OF P_uR QuA_T_'

0

_.j v

: _" _o_

•" o :

: _ : _;
. _ :

: _® : g"®g

_ _"

o

o

_ 0

?"

.,.-I

o _ _ _ o

o_ .., _
_ &_ _ _o ,__ _., _ o

o_ _®_ _ ,_ =
c_

*J m

0_

0

o

I

m •

_0 _

_ 0 _ O_

• ®_.;

: _ _:
: _ _o_:

: _ _:
, o_ _.

:o E_ o_: °_ _ =

0

O0 _

o_ _

0 Z'-_

- _ .
-._ 0

i

o_ _-_
,. °.

o _ '" Eo_ _ ®o
[-_ 0 0

_ , _ _ _ oo-_ o _= oo _,_

o _ __ _o _ _ _ _o

m o_

_' .

_J 0

++_ _-,._ _ =

_ _o- __ _o

_ o _

: _ :

.--0

,--i

:_ _ • _ _

.._ _: I _

i® _ ®" _ _" _

ii -

=_ o o '"

_ ,_ _

",_ 0 I I

1 _ _,_ ,

o _o _o_

_. _-_

f_

2 -

0

>.
,-4

o.

o _
Z _

e

.B

.)

4l

.ll

o ..l
e

., :

o :

ea -.-I _1)

R

:o 8®:

w _

1.)

_ _°

I

N o

o_

U ,J _,-i

_J

o_

A

A

o-o -_

7-"? _ ,,;

.c: O .c: i -,_

o

ogo _

O

°_

=o

v cn

O ._J
,-i

I_ I .-t

0_

O
m

v

°,

8
o
O,

c.,

A

O

--:- ._,-

u

_J

"0

0
_J

0

o

o

=-

o

_,

o.

.. _ _

+ :3 :::1

v_ _ _ _- _

*_ .._ _3_

I

z

_J

8
0

_J

_ _,

°_

_4

,,l=a

." ++ + m , g

: +_2: _ _
: ma+. m _ mmo

"_l l_l

_i Iy

:_ l-i l-!

LL'.

c
¢11

IJ

,--t

II II

c Ic I
m m

_ ++.++.!++,;!_ +,,.+,+ ,+,,+.+,_ ._P+_;-.,., +

_A

oo

•°1_ I

H U

gx
o

I I
,.-i ,..-i

ZZ
etet

.11

0 _
o E

•_J 0 (J

>_

o

t_ m

_o ---+p__
+

. 'l+l._O _O _ m

o_ _

+Ja

I

L:
o.

(a . .

i ,-l+ .-_ l_

o _,_
| P.,' '=

i.-i I=+

"+' -2

.. _+(J.
_l _l" _: IC

_J _ _ _

,j_ ,,, =, -

A 0.

?_

A

o_

¢0
I

_ o

mm _+l +_m

C

d

o

_ 22

A

Z

H

4J

l.
X

v_

o

o

o

o _ _ o,

_J

_o _ _

_o _

o

0, _ _ 0,

_v

o _o _o _o _o_
I I I I t I

-_ 0 -_ 0 • • • °

o o o o o 0 _
v_v_ I

_ O O O O c

-2-7-7-2_7-7 o

I

_J

o o
o

I
+

_J

_1 _.

"g

.--i

¢0
u

...-i

_g
$'I'$''I'_I'_'I'

#_llll_llO

I I _ I I I I I I

777_77

._ Z I _'1 _J_i _J >1

O _ O UI_I_ =l,-I X I

0o0 0

Z" o,g:

0 _ I II all II a I

o

.l_ _ _ _._ _1 _1 >1 _ _,

0_'_ "_ "_ 0

m /

_ _ ooooo o
• . • , o ,

_o _

t=l_l_ O

0._

N

_.

._

®-,

0.-_

IIII

_MHHH !

_ _ O O

o

8Z

I

_J

,J

_e

_o

o _

=

iJ

2
a

o

®

_ c

0

,,_._ _.
Q, ,-.-+ _

e_

°v,-_

e

X

• °

° g
0

g

2 _

_ 2
g =
N

_ _, oo _ _

• . -,.-0

°_ _ _

-. -.

;2

7

?F r''_ _ QtJAL,_,"

_..... _..! _i_.:.

0 _

0 _,x

.o _:

I

I

_ °_

"_ E I 0'_

E_

_ L

>, ," _ _ -,

_ o
- o o_ -o _ •

d

o _ _< _ ._ _o_ _ o

o o

• o ®=_ _ ®o

I

OR:: _ _,l PAGE !£

0

*.1-,-4

-.-._--_. g_

V V V V V V V V V V V

2_222222_2

_u o,I

x:i

_o

°

Ow _ _

: o _ _°

: _ _: _ o_ _.

0

I

__ _ _,_

_ _ _ _ ..

I I

a

4, _ ,B

: cJ_,

w

!°,_:
ii

;E ,.l

,.

I

0

E _ m

o "_ _

_m _.:
o H

• _ _ _ _ I_ _
• I

.

_ 0

o_
z

0

_ 0 _ _J

i

u.
_D

• ! &
_0

• o : =o

: =z _: _ g,

Z C

I

o_
:_'-

_ _ o

_ _ oz = _

_ oo _ o ,

-.. -..

-.. -..

I

S

C

o . :_

ao_

=_,,, =_ _,

,--t

_ _?_ 7 - • _ ..

:_ o_ :
:_ _ : ..

..- X : x o _
0, m

o

I

:o .:
_," _ _" _

• C •

.= ao:

.o _. =
::_

_, , __ _o_

-.. -..

u)

o

v_

• I_,

.u X Z

°. _

.o

_ o

_ 0

._ o_ • ,

_ _

2:

f_

,--t

I

I

0

,,, _ _ ..

_,o_I _ _ _ o

_. _E _ _

OF PO0_ QiJA,._T'Y'

il

0

0 _
Z _

,,+_ poor qu_L+t't'Y

• e

: °

. o

e

o_

o:

," o: o

: _:

_ _ _ •

o _ _

;2
o

o

.,..4

e_

,--t

q0

o_

_ o

I

o

_J 0

_,_o

,.-i ,--I

.- _p,_

1"

=, _.fl

/

.,.-i

°.

o
-o

.,,-t

.ll

m c
_ ,.,.4

,--t

,--i

o _ _ o_

Zo

o

'O _ 0 _

-,. -.. -..

?

m t

"o
I

I

8=:-

_j v

_o
_®
o

o

o _ _ c
E o_ (p

o

°o

c

_ m iJ

5_®8g

OF POOR QUALITY

?

o_

.,=.o

.'7

,a I_'

E

u

-._1 _
c_n3

c..

o _

: _

: _

: _

:. _,_"
_ _ 0

: o_
-
: o:=_o

: _.
: _=_

: _ _ .

. .- 0 _: u)

. r _D U 0

_ _oo

• o _ _
:=

o_

m

8

g _

o _ _,

_ _

® _
:_ _ _

. _
_ _ _

= _ o o: :

o _ _ _ ; :
_ _ :

_ _ _ 8 =_:
_ _ _ _:

_ o __ :

o

_= _ _:.o .

:}
c:, _ u}

o _ ®_ _

iio o
0 0 0 0 _'_

vvvvv

w

8

I

o_

°_
=

I

=

I

J

m

z

•_ x::

o

OR_!:,_;,L PAGE" IS

OF POOR QUALF]_

'-'q ii_

t

{J ,-I

C: •

_m

: =,-.t ol h

•= _ w,_ ,== •

• c •

• o,t

¢= w-_ •

g 2

L
0J
,-q

r.

,-4
s

zoo
m ,--i

2

_ o

k_

U _.0
0 "0

.. -_ _

U _ I0 C 0

=_ ;- ._
r.J m _.J .4

t"

-,..t

I1
,J

o

m

..,-i

mI

--4

0
,--I m
,-'-t

,"1

0

o_ _

m IJ

,_I ¢I

o ° _ o_ ,

T

I

b

o

ul

c I
x

cr

o _.

m m m m rn _3_I_ _ • I

v v v v v v v v v v

OF POOR QUALFrY"

A

I

_o
I

o

_4

I

T _

o

I

_ ,,..;"_-..

ii-.,-t

,d

u

&

8

® ? _'_'^
•. _ _ ,,

; _ =. == =:

- _ =_ _. _ _ _
_ ,°

_, _,o _,_ =,_ _
0 _'I_ o.., _J__,_o _ ®' _, = _ I o

ii̧ !

°

a

;o o:
! "

i "

v
I

_u

o=o

r_ _ 0

A

0

_i 0

I0 0

V _ _

0

=o

o_

v

r

C3

II

x_I _

o
A
t,

H

0._-_

"r"_1.01

I_i_ I
m

,--i ,-.i

=

I

=L"

_ .a I

°_
_ _ o_

o _

• 1

tJ _ 1.4 ..,-_

=

o

H

o

_ o

o I

=oo_-=o

- 0 _I_A m

o _ _

i-

o

,B

: _o :

. o _

. _oo :

r

: °

e

_, °

A o• 4,

• I11 0 _

A

o
°_ o_ _._

o _

I

2

0

0 _

0

.o

,=-

,c
E

o_
z

o o

oo

_ E

m

o

_5
8&

a _ a _

/

_ o

• 0
0

2?

w

o _=g

o_

.11

. _o_
_ _o

o

o _ _._ ^ o,

=°

_o
_.= _

_.o

o_

_o

_J
o

o_

0 _ •

_= o=

_ 0 *J

_ 0 _

_ 0 _

0

o

02
I

-?
_ 0

o_ T

._

_ _o

. _o _

_= .'_o o
o;-_0

_o _-_o

oo oo_
, • I I_

o

E

: _o:

• "o ._

:=o g:

. o: g

0 _

_ 0

E l _o
I

°.

o o_

o

ul

_ _ -_ ®

o

o

o

,o

oJ

E

o

=

o.

0 I

_ o

ul 10

,--i

o o

• _,.=_o _,o

0 _ _ _ _O_

m

o

oooo

_ o ooo o o o

A

_,:=t
0

oo
I I o

I I II

_J

0 0 0 _ III

o u
o o o o o

+ + ÷ ÷ _ +

ql

o

13

3=

0

0
0

o

I

A

,...i

.,-' I I IC _

o .el J_ _J I
_0 0 0 _)

o

o

e e

e

_o _

e

e_

e _ oe

e _e •

-°

i_ _" _.".

o,
=

o

,-_ 0 £I
| 0 _

E

o--

,--i

o

o

o

o

o" °, c '_,

g _o

o

.c:
u

o

Z

9

_U

0

"° I

_ H

I" _ 0

oO

_o
c i "-"l_t

u} ,.0 (n

m

,,.,,

o

c_

o_
_..

0._-_

z 0

Ill ORIGIN.r_L PAGE IS

OF POOR QUALITY

° i
IN

-_ _ 8 _

_ i ct

-. -.

: :

: :

: :

" :
• e

.._ _:
• e- _

A

_ A

o_ _
G= ,'8

.. . 0.

• _ _° _

oo _ _00_
,_ _ _ _,_ .

In

o ._

o {,,i
I

o

io

.c:

C."

a

w

e
w

°

,K 0 •

l

g

,.,-t o
E

0

_ o ®

_ 0 P C:_ _: _' '_ _ _ o_
." o _: o _ , J _'_" ._._

• ,¢ o, o o c _ ,. -,-, .u _

o

o

2 ,9

:g

0

A_ 0

n.?._

_g2

0_

o

o

o

o _

_o
J_

0

0 _

l

0 00_

°_

0

d

t_
0 °.

o

.u

_" g
3

a

!

_ x

0 •

o. ._l _ _._ o o

o_ ..

0

_.i _ _ =_

l

_ha) I

mo 7

> _
I

m

5

J_

_J

=o

.c

.,w

o
c

_ 7

o 4

"o

w_

m

o

m

o

o

g
m

>

o

o

OF PO0_ ,_._._ -

o

ol

o

ta

u

o

,_._ ell

tlla_

H I I ,_

"_ I ,_ _0

-_1_,=°
°

: _®>"
:

: _'_"_

: _o _:

: _-

• u m c_,

,i _J u)

•_ ca m Ci, m >_

_ O_ 0

i,

_ o_
8. '_

ff _ _

"_ _ _ _ ?, _:

o :o o = f_: :

_J m

_ _'_ _ = :: :

®= o

!= ..-"

o o o o o_" _ .""

2 8 ,_ ::',>, '-, _ _m ul _
v v v v v v v v

=

4

=

iI

o o

I

B

m :

,B

4=

a

: o
.=

,= J=

,=

,A

: 01 _=:

1.4

01

°_

,..-t

_ o
o

o_ _

N

_=E o _E

o

co

==
_J

_J

no

I

O_,3!;qAL P:?..2:E _S

OF POOP. QU._LtTY

I

o

- =.

o _ °

o

g =

_ _ . 0

°.

o

I

-._._ _
E

o

_J

.o

m u_ _

5 "_1

_ m

i,tl .1_ o

- ==:

•w .i_

e

iZ, _i

r,_ x= _...! _

8

o

°.

cr

(

u i:::

0 r_m

I_I _"I : o w

!

E_

_: o__

u_

' ,_ _

_ _°_

-._ ®_ _;o _J

_2

I

I

l

'.e r_

=

o o
uz

0

o_°

o

o=O

?

II --_

I : .--

: : _

• >,

_ °.

=. g 2

: 8 _: _ _ _ _ _
__...: __

..

+_._

'

v_'_=_

@

o_

m

_d

u

_ 0

I¢1

I

<l

u
I

I

I

I

g_

I

?
u%

1,4

o

a

u _ ,_

4,

4,

:_ < =® _.... _ _ ..

: _ '_. =

_ •

-1

Q

= I

g
,J

o _

N

g

,"4

U

%.
e e _

I

: o:

_0 a

! -
i "

0 _ _

E-*

. _
a

u.
r_

o

,-'4

o_

t.

: _i
¢11 ,_

(J

_'_0

A A A _

I= _ ==

°_

999_ _ g

0

m m

oo
° °

ii
o 0

_l'Cl
m

II II

,"4

_ _ 0

_ o_

_o _

o_
I I

_o•
0

0

0,-4
0

i

° _,--i

o

I

0

o

: , o;
0 In ,l,

:_ o..

• .. _:

m

o

o

x

i

;

!!.= =

o

c

gz

g _

_m

II
II

ii

_o

g_

_E

N_

= III

6
e-

-o

0

o_
o

i

^ _

I"
_ _ _J

o

-_= II

m

i

+

I I

9 _
,-4 ,-4

! ° i-
4-

= _o

0

0 0 m_ V,_ _

. I _cl I_-

I ° =, II-I

o

U

o _

: _ o

N

_J

0

o _

o_ _

°

e

0 _m

:.o_ _:

:N 2:
:8 _.:

o_ _ "_

_ . _ o

_o _ _

A _l --4

-,-.I

U

0_ ,

,--t

• •

.,.-i

e

• 0

e II1

e

i;

e ,-q _

. -,_ ®

_ Z

: o

_ _ 0 0 _ _ 0 _ _ e

! oooooooo :."
tl

• e
e e
• e

e

e •

e
e

e

: °

: ®:

,-_ °

0

"- .,..
• e e • • • e •-_. -_. -...

n_

I

o_

o.

,._ .-4

o

o _ _ o

0

0

0

.-4

_a o

o

0 0

.,-i

0

QI

..-t
"e

g 7

.,,-t

e ,..-i 0 •

i; : ° -

••_ U:

:z _: g
:o _:

I

o

_4

' _ U

a o ® =

II

,. m

_rj

ao

.-4 0 0

... -.. -.. -.. -..

o_ _ _ __ B

• _ _ _ _,

o Oo0o=
_ O 0

o _

_ 22

o° .

° .:J_

o _

m

• _

W Z::

: : =_

: :

: :

: :

: :
:
: : =_

Z : •

._ . o: =

- I w. Z "

g : _ o:
q_ • • 0c

-o_ . _ : _ _:
Z _ _ _ : _ o._ o

X _ _ • U

_ _ . _:

o.

°-.

_ o

m°

888 _

•. ,...

°.

* o,

0 •

. o: c

I

:8 _:

_4

._" _ ._

_ _ _ o
_ , =

_ _: _ -_.

8

UT_J

x_,-_ _-_,_
.0

_ x

E _

: °

: _:

_ _°

.• _
: "I ®:

_ O

" 3:

: _ °!

_ Oe

• g -_"

o_)
,.--I °

,..-t ,--t

° _

o_ _

_ _ _ _ • =I_ I _

#

N
°

_ _°

'_t"

o il _ <
,.o

8'

1:3

_4

10

j

_4

& °
o_
o

OJ

C,4 ,-_ C)._.

o

.Q

-6

.O

o_

w
,-_ °

,-
o

°_

10

13 q)

x

o

o

H

ui_."

_o
r_

_A

X

I:_ oJ

o_

X_

_J

n

&

r_

o
C6

t_

la

_J

o=

°_ _ *_

8 8 8

o o o
4.J _ "_

oo o= "_

o o .

'4 '4 '4

+

8

r_

o

== &
<I o_

A
H I _J

0

o_

8. _2 "

=_ "'=> 8,

r,,O ,.-,

._ o_

-,4 " "_

o _

•_ o o ,-,
o

,-4 ° o._ o

--4

_ o=__ u
I

,.--t

°_

•-_ 0

_ °_

o

o (J

_J

°_

•J _

: _ =_ :
: . _ :

: g _® :

.m.J

el zJ

,_ o

_* o

._ o

_ _o

:_ _ _,_::

i I =®_: -= ==o.

_J o

II

A

2"Z
3_

U

m ,..-I

O

m

°_ °_
_A

_2
xx

22

22

OF POOR Q!.IAI-_If

o
14 v

e

• _= -_

.k 3=

• 0 • _

_ _ 0
o

:"PRECEDING PAGE BLANK NOT FILMED

-_,o ==

-o -._

_ O0

r_

o

_u

.,.-t
3

_. ",=
.:_! _

o

o

o

w

o_ _

,-a ==

A

_ _ °

_ _ _o

g g _-

_ o_

H

O

O

.o ..O
r"

F

v

,--- _;.;,...:_ !._

"°

o
_o

o 01

o

E_ o

,, _=

..o "_ u

I
O0

: : =

*= o •

• .,..t •

: _: _
•• _: _

• o _ •

: E ==:

• .,,4 •

.

_ _.
_. _.

• I ..-i ..,.-i

_ _o=

=: ,, _,_ul 0

u_ _--a r_ _ ¢ _

10

0

=.
E I

Cu 01

,--4

CU

t"

=

• .= _= • •

• : 8

•* : =
w

O_

o _ "_

•
0 'J 3¢

o

o
°

_o

-_o= _

_ _ _ o _

.* J ®: == ...''* _.. :..

s

o

°_

_o= _-=-

++
_ °_ °_

_ _ o
== ° •

o -: ._ _ =_ _®=_;_. _ _ == ®®- _"

o

o.
.Q

o .o

0J

_ o

0

_ _o

OD

I

_
B
o

w

4.a
,p-4

8

m

: g : . _ _ _o=
: _ _= : _ oO. _ _

:_ _ :
:_ _ : v

m

:o : _." o

• .: _ _i _ ._: _ _

.£1 e_ .£1

_ _gg

o

,--i

_8

J_

• ,. . I _._

:U.

++

U__ .

_ 0
m m_

8

8

8

o_

"C'C

m

m

F
_i_iii"._ __

Z_

,_._"

°_

o _

o

_ o

_ g

o _
"_ I_

_I I _I _=I

_ _ v

o

,-.-i

,.-t

o

m

o

U

_ ".=..

.,_ _

O_ _ _

G

=o

0

--i

U

0

i

0

o

0

°_

A

O

U

||

O

O _

N

_ N

III

_1 w 0 0

.... _'_" _:_

i I_x m

o
o -_: oO_b

.... ._

,_= _

°_ 0_
A_

+ El E I

I _A A

-.-4 -,'t -."1 $ |

_ _ I:_ I I

0

_u

¢II
,--4

,..-t

,-I ,--t

I=l_= I

U_l _l

• o

_:l "l

i_ .,i,

.=

L:

v

N

E
o

I

A

o
r

i

o

II

ffl

.,-4

_o

=_o

L"
0

@

g_

.r,

e.
..,.i

.= .. _=

_o i

e

_ _ _QI _ ,. ,i,,

_ _ m • E _J_ _J _11

I= I _ _ " .

El _ _ __

• L_U _ rJI _ 0 I

o_

o

o

0_

I

._ll_

o0==
=== .-

0 ,i_ 0

Z

2=== -

mE_ _J EI,_ (n

0

o o

o

_A

oo

= • .

o
r_

• _ 7-: _O0 a'

°

_I _, _o=

c l ._ ® o

._ .x

l

,l

,x o .,--_

: _o_.:

.:' _"

Z _'-_ 0

,_ °_
A_

.Q.Q

oo
0 .

_o
• I I

l_ _ o_

II u , ,

0 o

v, =o -_ _o

o =

0

,--t

,_ _ °o

I O_

o_ _ _o_

0'0 I_

o
z

0_

o

iili

: 2"

•x z

u _

2"

•.-.i °

I

°_

lo

,---i

.. g

,-.t

e-

..-i

,ll

z

a _

w

e

w

e

e

i ,i I

0

,..-t

°_

0
I

'_o

°_
,-_ in

_-

_ o

U

0 _

• _ ,.-t

m U m _

_ _ O0 0

_ 0

H '-_ _ 0

: _ _: _ ._,
:_ _: _ _ _

_ e

. I 0 o do ._
° I o _ _ '=t--

0

: o :

: o_..
0 •

i A •

: _ _.:

" °I:

: _:

o
°_

i o_

ul

o

o|

,_ _ :ll I

o

_ 01 ® m

o

o _

_ __ o

o _

0 ui 0 n

I

Z

_1 _

_, ..
01_

_e _ee

.. o

o : o o=

•m _ C

. o. _

s

II

4-

,,,,, '4 °
-_ &x' 8

& # ,_,._ . .. o
='lJ _ _ "_' o°- "

.. oo. _ -
-,-,.,=o o = _I "r_ ,.C tl I t_ •

el _ N N _

ORIG.;_ L PAOE IS

OF P_'__e OUAUTY

O

0

•- _ _ _

o _. _ _.. +_-+o_ _
_ _ >__ _ _. _,, _ ,,0

O OU_

_ n

0

,',

#_ o ,_ o=o_=o ,_ ..'_ ..._'_ .-,
=1 0 Cl 0 _: II

) ._ _ -_ _ _ o
_D 0

-r'

t,

• o::

. _®. & g

0

o°. °.

0 0 '_

.. -_ _ ,_
, _ _ _

°_ _ o _

IO .._

.Z"

)

o. ,..i_

_0 _ 0

.=

_ 0 _

o _
_ o

,.-i

g ,_'C

g oo

• _: _ ,. _*o"

:o _: _= _ _ _

0

o _ _
, • _ o

,_o _ ._" ®° .._,_'o

,,,, _°_ _° _,-_,
' _ _ __o __

_ _ o ,_ k_

o
_ v

_ r-,_ __:. "A_

,i _ _r_ r_ii_L_'_F

z

Z

d
..-i o

e0

_ o 'g

: ,j

o

,--t

,--i

.,,-t

o

A

.-_ _ 010
_ 0

° _

_J

b,
_J

_o
o

r_

¢0

_g

A

?

+.,_ ._ J

_n • 0 _

o I

t

_J 0

o o

^^ _ o_

.Q.Qoo. _

f_f_pgoo_

g

o

o

° _

o
_ o

o

: o

..o _

II
J

c=;

m.

ol-

rj

¢J

u_

v

0

I=: I '_

A
Z
0

I

0 _ 0 0 0

O_ _ O_H _ _ _

= =
"='

= '-

.,. =
= '-.
=" =

= =

.= =
= =
=-" =

= ,,.;=

_ o_

1 "

I/ pRECEDING PAGE BLANK NOT FILMED

c¢__ !i _

o

_ rt

_ 0e_

• _._
I_ O0

z I

O_ _

• 0 ._ .0= ,_ ? == ; ; ..o ..._ 0

? "?

_ •° •• n N¢II ,-'-_

• o _ ,_ =_,o _ _,=

_ o0 °•

o
: _ 0

",_ 0 0 _ (,_ 0 ® ® ® 0 ®

I/

+-+

l

u_

i Oik_w_NAL p.a:,_:_

OF POOP ,r?UAL;TY'

v c,.,

°,

x

£;.._
_ o o

o_

u

0 _ G.G.

/

A A A _ ^

V_V_V_

_ 0_-_

_ 0
• 0"_

_et

oo_

,,

_33.._3

oo.3_g_2

,,_ _

